Displaying publications 81 - 100 of 206 in total

Abstract:
Sort:
  1. Daum LT, Canas LC, Klimov AI, Shaw MW, Gibbons RV, Shrestha SK, et al.
    Arch Virol, 2006 Sep;151(9):1863-74.
    PMID: 16736092
    Currently circulating influenza B viruses can be divided into two antigenically and genetically distinct lineages referred to by their respective prototype strains, B/Yamagata/16/88 and B/Victoria/2/87, based on amino acid differences in the hemagglutinin surface glycoprotein. During May and July 2005, clinical specimens from two early season influenza B outbreaks in Arizona and southeastern Nepal were subjected to antigenic (hemagglutinin inhibition) and nucleotide sequence analysis of hemagglutinin (HA1), neuraminidase (NA), and NB genes. All isolates exhibited little reactivity with the B/Shanghai/361/2002 (B/Yamagata-like) vaccine strain and significantly reduced reactivity with the previous 2003/04 B/Hong Kong/330/2001 (B/Victoria-like) vaccine strain. The majority of isolates were antigenically similar to B/Hawaii/33/2004, a B/Victoria-like reference strain. Sequence analysis indicated that 33 of 34 isolates contained B/Victoria-like HA and B/Yamagata-like NA and NB proteins. Thus, these outbreak isolates are both antigenically and genetically distinct from the current Northern Hemisphere vaccine virus strain as well as the previous 2003-04 B/Hong Kong/330/2001 (B/Victoria lineage) vaccine virus strain but are genetically similar to B/Malaysia/2506/2004, the vaccine strain proposed for the coming seasons in the Northern and Southern Hemispheres. Since these influenza B outbreaks occurred in two very distant geographical locations, these viruses may continue to circulate during the 2006 season, underscoring the importance of rapid molecular monitoring of HA, NA and NB for drift and reassortment.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics; Hemagglutinin Glycoproteins, Influenza Virus/immunology
  2. Ng HF, Chin KF, Chan KG, Ngeow YF
    Genome, 2015 Jun;58(6):315-21.
    PMID: 26284904 DOI: 10.1139/gen-2015-0028
    suPLAUR is the transcript variant that encodes the soluble form of the urokinase plasminogen activator surface receptor (suPLAUR). This soluble protein has been shown to enhance leukocyte migration and adhesion, and its circulatory level is increased in inflammatory states. In this pilot study, we used RNA-Seq to examine the splicing pattern of PLAUR in omental adipose tissues from obese and lean individuals. Of the three transcript variants of the PLAUR gene, only the proportion of suPLAUR (transcript variant 2) increases in obesity. After removing the effects of gender and age, the expression of suPLAUR is positively correlated with body mass index. This observation was validated using RT-qPCR with an independent cohort of samples. Additionally, in our RNA-Seq differential expression analysis, we also observed, in obese adipose tissues, an up-regulation of genes encoding other proteins involved in the process of chemotaxis and leukocyte adhesion; of particular interest is the integrin beta 2 (ITGB2) that is known to interact with suPLAUR in leukocyte adhesion. These findings suggest an important role for suPLAUR in the recruitment of immune cells to obese adipose tissue, in the pathogenesis of obesity.
    Matched MeSH terms: Membrane Glycoproteins/genetics*; Membrane Glycoproteins/metabolism
  3. Ong SG, Cheng HM, Soon SC, Goh E, Chow SK, Yeap SS
    Clin Rheumatol, 2002 Sep;21(5):382-5.
    PMID: 12223986 DOI: 10.1007/s100670200102
    The aim of this study was to investigate the incidence of IgG anticardiolipin antibody (ACL) and IgG anti-beta(2) glycoprotein I antibody (anti-beta2GPI) positivity in patients with primary or secondary antiphospholipid syndrome (APS) and systemic lupus erythematosus (SLE), to assess the association between IgG ACL and anti-beta2GPI, and the relationship between the presence of ACL and anti-beta2GPI with the clinical manifestations of APS. IgG ACL and IgG anti-beta2GPI levels were measured in 51 SLE patients, 20 patients with SLE and APS (secondary APS) and 11 primary APS patients using commercially available ELISA kits. Relationships between laboratory data and clinical manifestations of the patients were examined. The incidence of IgG ACL positivity was significantly higher in primary (36.4%) and secondary (40%) APS than in SLE (13.7%) patients (P = 0.02). The incidence of IgG anti-beta2GPI positivity was significantly higher in primary (54.5%) and secondary (35%) APS than in SLE (7.8%) patients (P = 0.0006). Mean levels of IgG ACL and anti-beta2GPI were significantly higher in the primary and secondary APS than in the SLE patients (P = 0.002 for both). A significant relationship was found between IgG ACL and IgG anti-beta2GPI (P = 0.01, R(2) = 0.56). There was a significant correlation between the presence of IgG ACL and a history of thrombosis in the combined primary and secondary APS group, but not in SLE patients. In conclusion, in this study IgG ACL and IgG anti-beta2GPI are closely related and mean levels of IgG ACL and IgG anti-beta2GPI are higher in patients with either primary or secondary APS than in SLE patients.
    Study site: Rheumatology Clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
    Matched MeSH terms: Glycoproteins/analysis; Glycoproteins/immunology*
  4. Meng SL, Yan JX, Xu GL, Nadin-Davis SA, Ming PG, Liu SY, et al.
    Virus Res, 2007 Mar;124(1-2):125-38.
    PMID: 17129631
    A group of 31 rabies viruses (RABVs), recovered primarily from dogs, one deer and one human case, were collected from various areas in China between 1989 and 2006. Complete G gene sequences determined for these isolates indicated identities of nucleotide and amino acid sequences of >or=87% and 93.8%, respectively. Phylogenetic analysis of these and some additional Chinese isolates clearly supported the placement of all Chinese viruses in Lyssavirus genotype 1 and divided all Chinese isolates between four distinct groups (I-IV). Several variants identified within the most commonly encountered group I were distributed according to their geographical origins. A comparison of representative Chinese viruses with other isolates retrieved world-wide indicated a close evolutionary relationship between China group I and II viruses and those of Indonesia while China group III viruses formed an outlying branch to variants from Malaysia and Thailand. China group IV viruses were closely related to several vaccine strains. The predicted glycoprotein sequences of these RABVs variants are presented and discussed with respect to the utility of the anti-rabies biologicals currently employed in China.
    Matched MeSH terms: Glycoproteins/genetics*; Glycoproteins/chemistry
  5. Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, et al.
    BMC Biol, 2015 Dec 22;13:111.
    PMID: 26694817 DOI: 10.1186/s12915-015-0220-7
    BACKGROUND: SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level.

    RESULTS: iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3' and 5' untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9-10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion.

    CONCLUSIONS: iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes.

    Matched MeSH terms: Glycoproteins/genetics*; Glycoproteins/metabolism
  6. Jantan I, Pisar MM, Idris MS, Taher M, Ali RM
    Planta Med, 2002 Dec;68(12):1133-4.
    PMID: 12494345
    Rubraxanthone and isocowanol isolated from Garcinia parvifolia Miq. were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets using 3H-PAF as a ligand. Rubraxanthone showed a strong inhibition with IC 50 value of 18.2 microM. The IC 50 values of macluraxanthone, 6-deoxyjacareubin, 2-(3-methylbut-2-enyl)-1,3,5-trihydroxyxanthone, 2-(3-methylbut-2-enyl)-1,3,5,6-tetrahydroxyxanthone and 1,3,5-trihydroxy-6,6'-dimethylpyrano(2',3':6,7)-4-(1,1-dimethylprop-2-enyl)-xanthone were also determined for comparison. In the course of our study on structure-activity relationship of xanthones, the results revealed that a geranyl group substituted at C-8 was beneficial to the binding while a hydroxylated prenyl group at C-4 resulted in a significant loss in binding to the PAF receptor.
    Matched MeSH terms: Platelet Membrane Glycoproteins/antagonists & inhibitors; Platelet Membrane Glycoproteins/metabolism*
  7. Wong YL, Anand R, Yuen KM, Mustafa WMW, Abraham MT, Tay KK, et al.
    Glycoconj J, 2021 02;38(1):1-11.
    PMID: 33547992 DOI: 10.1007/s10719-021-09973-z
    The prevalence of oral squamous cell carcinoma (OSCC) is high in South and Southeast Asia regions. Most OSCC patients are detected at advanced stages low 5-year survival rates. Aberrant expression of glycosylated proteins was found to be associated with malignant transformation and cancer progression. Hence, identification of cancer-associated glycoproteins could be used as potential biomarkers that are beneficial for diagnosis or clinical management of patients. This study aims to identify the differentially expressed glycoproteins using lectin-based glycoproteomics approaches. Serum samples of 40 patients with OSCC, 10 patients with oral potentially malignant disorder (OPMD), and 10 healthy individuals as control group were subjected to two-dimensional gel electrophoresis (2-DE) coupled with lectin Concanavalin A and Jacalin that specifically bind to N- and O-glycosylated proteins, respectively. Five differentially expressed N- and O-glycoproteins with various potential glycosylation sites were identified, namely N-glycosylated α1-antitrypsin (AAT), α2-HS-glycoprotein (AHSG), apolipoprotein A-I (APOA1), and haptoglobin (HP); as well as O-glycosylated AHSG and clusterin (CLU). Among them, AAT and APOA1 were further validated using enzyme-linked immunosorbent assay (ELISA) (n = 120). It was found that AAT and APOA1 are significantly upregulated in OSCC and these glycoproteins are independent risk factors of OSCC. The clinical utility of AAT and APOA1 as potential biomarkers of OSCC is needed for further evaluation.
    Matched MeSH terms: Glycoproteins/blood*; Glycoproteins/metabolism
  8. Chow YP, Abdul Murad NA, Mohd Rani Z, Khoo JS, Chong PS, Wu LL, et al.
    Orphanet J Rare Dis, 2017 Feb 21;12(1):40.
    PMID: 28222800 DOI: 10.1186/s13023-017-0575-7
    BACKGROUND: Pendred syndrome (PDS, MIM #274600) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss and goiter. In this study, we describing the possible PDS causal mutations in a Malaysian family with 2 daughters diagnosed with bilateral hearing loss and hypothyroidism.

    METHODS AND RESULTS: Whole exome sequencing was performed on 2 sisters with PDS and their unaffected parents. Our results showed that both sisters inherited monoallelic mutations in the 2 known PDS genes, SLC26A4 (ENST00000265715:c.1343C > T, p.Ser448Leu) and GJB2 (ENST00000382844:c.368C > A, p.Thr123Asn) from their father, as well as another deafness-related gene, SCARB2 (ENST00000264896:c.914C > T, p.Thr305Met) from their mother. We postulated that these three heterozygous mutations in combination may be causative to deafness, and warrants further investigation. Furthermore, we also identified a compound heterozygosity involving the DUOX2 gene (ENST00000603300:c.1588A > T:p.Lys530* and c.3329G > A:p.Arg1110Gln) in both sisters which are inherited from both parents and may be correlated with early onset of goiter. All the candidate mutations were predicted deleterious by in silico tools.

    CONCLUSIONS: In summary, we proposed that PDS in this family could be a polygenic disorder which possibly arises from a combination of heterozygous mutations in SLC26A4, GJB2 and SCARB2 which associated with deafness, as well as compound heterozygous DUOX2 mutations which associated with thyroid dysfunction.

    Matched MeSH terms: Lysosome-Associated Membrane Glycoproteins/genetics; Lysosome-Associated Membrane Glycoproteins/metabolism*
  9. Fish-Low CY, Than LTL, Ling KH, Sekawi Z
    J Proteome Res, 2024 Sep 06;23(9):4027-4042.
    PMID: 39150348 DOI: 10.1021/acs.jproteome.4c00376
    Leptospirosis, a notifiable endemic disease in Malaysia, has higher mortality rates than regional dengue fever. Diverse clinical symptoms and limited diagnostic methods complicate leptospirosis diagnosis. The demand for accurate biomarker-based diagnostics is increasing. This study investigated the plasma proteome of leptospirosis patients with leptospiraemia and seroconversion compared with dengue patients and healthy subjects using isobaric tags for relative and absolute quantitation (iTRAQ)-mass spectrometry (MS). The iTRAQ analysis identified a total of 450 proteins, which were refined to a list of 290 proteins through a series of exclusion criteria. Differential expression in the plasma proteome of leptospirosis patients compared to the control groups identified 11 proteins, which are apolipoprotein A-II (APOA2), C-reactive protein (CRP), fermitin family homolog 3 (FERMT3), leucine-rich alpha-2-glycoprotein 1 (LRG1), lipopolysaccharide-binding protein (LBP), myosin-9 (MYH9), platelet basic protein (PPBP), platelet factor 4 (PF4), profilin-1 (PFN1), serum amyloid A-1 protein (SAA1), and thrombospondin-1 (THBS1). Following a study on a verification cohort, a panel of eight plasma protein biomarkers was identified for potential leptospirosis diagnosis: CRP, LRG1, LBP, MYH9, PPBP, PF4, SAA1, and THBS1. In conclusion, a panel of eight protein biomarkers offers a promising approach for leptospirosis diagnosis, addressing the limitations of the "one disease, one biomarker" concept.
    Matched MeSH terms: Glycoproteins; Membrane Glycoproteins/blood
  10. Sorokin EV, Tsareva TR, Sominina AA, Pisareva MM, Komissarov AV, Kosheleva AA, et al.
    Vopr. Virusol., 2014;59(6):27-31.
    PMID: 25929033
    A panel of five monoclonal antibodies (MAbs) to the HA1 molecule of the influenza B virus of the Victorian lineage with high virus-neutralizing activity was developed. For identification of the virus neutralizing epitopes in HA1 escape mutants (EM) of the influenza BIShandong/07/97 and B/Malaysia/2506/04 virus were selected using virus- neutralizing antibodies (MAbs). Three EMs had single, two--double and one--triple amino acid substitutions (AAS) in HA1 (H122N, A202E, K203T, K2031, K203N or A317V). In addition, AAS N197S was detected in three EMs. A correlation of AAS identified with peculiarities of interaction of EMs with Mabs was discussed.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics; Hemagglutinin Glycoproteins, Influenza Virus/immunology; Hemagglutinin Glycoproteins, Influenza Virus/chemistry*
  11. Yusuf M, Konc J, Sy Bing C, Trykowska Konc J, Ahmad Khairudin NB, Janezic D, et al.
    J Chem Inf Model, 2013 Sep 23;53(9):2423-36.
    PMID: 23980878 DOI: 10.1021/ci400421e
    ProBiS is a new method to identify the binding site of protein through local structural alignment against the nonredundant Protein Data Bank (PDB), which may result in unique findings compared to the energy-based, geometry-based, and sequence-based predictors. In this work, binding sites of Hemagglutinin (HA), which is an important target for drugs and vaccines in influenza treatment, have been revisited by ProBiS. For the first time, the identification of conserved binding sites by local structural alignment across all subtypes and strains of HA available in PDB is presented. ProBiS finds three distinctive conserved sites on HA's structure (named Site 1, Site 2, and Site 3). Compared to other predictors, ProBiS is the only one that accurately defines the receptor binding site (Site 1). Apart from that, Site 2, which is located slightly above the TBHQ binding site, is proposed as a potential novel conserved target for membrane fusion inhibitor. Lastly, Site 3, located around Helix A at the stem domain and recently targeted by cross-reactive antibodies, is predicted to be conserved in the latest H7N9 China 2013 strain as well. The further exploration of these three sites provides valuable insight in optimizing the influenza drug and vaccine development.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/immunology; Hemagglutinin Glycoproteins, Influenza Virus/metabolism*; Hemagglutinin Glycoproteins, Influenza Virus/chemistry*
  12. Jazayeri SD, Ideris A, Shameli K, Moeini H, Omar AR
    Int J Nanomedicine, 2013;8:781-90.
    PMID: 23459681 DOI: 10.2147/IJN.S39074
    In order to develop a systemically administered safe and effective nonviral gene delivery system against avian influenza virus (AIV) that induced cytokine expression, the hemagglutinin (H5) gene of AIV, A/Ck/Malaysia/5858/04 (H5N1) and green fluorescent protein were cloned into a coexpression vector pIRES (pIREGFP-H5) and formulated using green synthesis of silver nanoparticles (AgNPs) with poly(ethylene glycol) and transfected into primary duodenal cells taken from 18-day-old specific-pathogen-free chick embryos. The AgNPs were prepared using moderated temperature and characterized for particle size, surface charge, ultraviolet-visible spectra, DNA loading, and stability. AgNPs and AgNP-pIREGFP-H5 were prepared in the size range of 13.9 nm and 25 nm with a positive charge of +78 ± 0.6 mV and +40 ± 6.2 mV, respectively. AgNPs with a positive surface charge could encapsulate pIREGFP-H5 efficiently. The ultraviolet-visible spectra for AgNP-pIREGFP-H5 treated with DNase I showed that the AgNPs were able to encapsulate pIREGFP-H5 efficiently. Polymerase chain reaction showed that AgNP-pIREGFP-H5 entered into primary duodenal cells rapidly, as early as one hour after transfection. Green fluorescent protein expression was observed after 36 hours, peaked at 48 hours, and remained stable for up to 60 hours. In addition, green fluorescent protein expression generally increased with increasing DNA concentration and time. Cells were transfected using Lipocurax in vitro transfection reagent as a positive control. A multiplex quantitative mRNA gene expression assay in the transfected primary duodenal cells via the transfection reagent and AgNPs with pIREGFP-H5 revealed expression of interleukin (IL)-18, IL-15, and IL-12β.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics*; Hemagglutinin Glycoproteins, Influenza Virus/metabolism; Hemagglutinin Glycoproteins, Influenza Virus/chemistry
  13. Norhalifah HK, Syafawati WU, Che Mat NF, Chambers GK, Edinur HA
    Hum Immunol, 2016 Apr;77(4):338-9.
    PMID: 26820937 DOI: 10.1016/j.humimm.2016.01.015
    Cytokines are involved in immune responses and the pathogenesis of various diseases. Allelic variations within the genes coding for various ∼30kDa cytokine protein/glycoproteins have been reported for many populations and have been the subjects of many ancestry and health analyses. In this study, we typed 22 single nucleotide polymorphisms (SNPs) in 13 cytokine genes of 165 Orang Asli individuals by using sequence specific primer-polymerase chain reaction (SSP-PCR) assay. The volunteers came from all across the Peninsular of Malaysia and belong to six Orang Asli subgroups; Batek, Kensiu, Lanoh, Che Wong, Semai and Orang Kanaq. Here we report our general findings and original genotype data and their associated analyses (Hardy-Weinberg proportions, estimation of allele and haplotype frequencies) can be found in the supplementary files and will be held at Allele Frequency Net Database (AFND).
    Matched MeSH terms: Glycoproteins
  14. Dash R, Das R, Junaid M, Akash MF, Islam A, Hosen SZ
    Adv Appl Bioinform Chem, 2017;10:11-28.
    PMID: 28356762 DOI: 10.2147/AABC.S115859
    Ebola virus (EBOV) is one of the lethal viruses, causing more than 24 epidemic outbreaks to date. Despite having available molecular knowledge of this virus, no definite vaccine or other remedial agents have been developed yet for the management and avoidance of EBOV infections in humans. Disclosing this, the present study described an epitope-based peptide vaccine against EBOV, using a combination of B-cell and T-cell epitope predictions, followed by molecular docking and molecular dynamics simulation approach. Here, protein sequences of all glycoproteins of EBOV were collected and examined via in silico methods to determine the most immunogenic protein. From the identified antigenic protein, the peptide region ranging from 186 to 220 and the sequence HKEGAFFLY from the positions of 154-162 were considered the most potential B-cell and T-cell epitopes, correspondingly. Moreover, this peptide (HKEGAFFLY) interacted with HLA-A*32:15 with the highest binding energy and stability, and also a good conservancy of 83.85% with maximum population coverage. The results imply that the designed epitopes could manifest vigorous enduring defensive immunity against EBOV.
    Matched MeSH terms: Glycoproteins
  15. Leow BL, Syamsiah Aini S, Faizul Fikri MY, Muhammad Redzwan S, Khoo CK, Ong GH, et al.
    Trop Biomed, 2018 Dec 01;35(4):1092-1106.
    PMID: 33601856
    Avian Infectious Bronchitis (IB) is a highly contagious disease which can cause huge economic losses to the poultry industry. Forty five IB viruses (IBV) were isolated from poultry in Malaysia during 2014-2016. Phylogenetic analysis of the spike glycoprotein 1 (S1) gene revealed that all isolates were clustered into five distinct groups. The predominant type of IBV isolated was QX strains (47%), second was 4/91 type (27%), followed by Malaysian strain MH5365/95 (13%), Massachusetts type (11%) and finally Taiwanese strains (2%). Four types of S1 protein cleavage recognition motifs were found among the isolates which includes HRRRR, RRSRR, RRFRR and RRVRR. To our knowledge, this is the first report describing the motif RRVRR and are unique to Malaysian strains. Six IBVs were grouped in Malaysian MH5365/95 strains. Among these, one isolate was different from others where it only shared 82% identity with MH5365/95 and to others. It formed its own branch in the Malaysian cluster suggesting it may be a variant unique to Malaysia. Alignment analysis of the S1 amino acid sequences indicated that point mutations, insertions and deletions contribute to the divergence of IB variants. This study indicated at least five groups of IBV are circulating in Malaysia with most of the isolates belonged to QX strains. As new IBV variants continue to emerge, further study need to be carried out to determine whether the current available vaccine is able to give protection against the circulating virus.
    Matched MeSH terms: Glycoproteins
  16. Rhee KY, Sung TY, Kim JD, Kang H, Mohamad N, Kim TY
    J Int Med Res, 2018 Mar;46(3):1238-1248.
    PMID: 29332409 DOI: 10.1177/0300060517746841
    Objective To determine whether pre-treatment with high-dose ulinastatin provides enhanced postoperative oxygenation in patients who have undergone aortic valve surgery with moderate hypothermic cardiopulmonary bypass (CPB). Methods Patients who underwent aortic valve surgery with moderate hypothermic CPB were retrospectively evaluated. In total, 94 of 146 patients were included. The patients were classified into one of two groups: patients in whom ulinastatin (10,000 U/kg followed by 5,000 U/kg/h) was administered during CPB (Group U, n = 38) and patients in whom ulinastatin was not administered (Group C, n = 56). The PaO2/FiO2 ratio was calculated at the following time points: before CPB (pre-CPB), 2 h after weaning from CPB (post-CPB), and 6 h after arrival to the intensive care unit (ICU-6). The incidence of a low PaO2/FiO2 ratio was also compared among the time points. Results Group U showed a significantly higher PaO2/FiO2 ratio (F(4, 89.0) = 657.339) and a lower incidence of lung injury (PaO2/FiO2 ratio 
    Matched MeSH terms: Glycoproteins
  17. Pua TL, Chan XY, Loh HS, Omar AR, Yusibov V, Musiychuk K, et al.
    Hum Vaccin Immunother, 2017 Feb;13(2):306-313.
    PMID: 27929750 DOI: 10.1080/21645515.2017.1264783
    Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance.
    Matched MeSH terms: Hemagglutinin Glycoproteins, Influenza Virus/genetics; Hemagglutinin Glycoproteins, Influenza Virus/immunology*; Hemagglutinin Glycoproteins, Influenza Virus/isolation & purification*
  18. Basabaeen AA, Abdelgader EA, BaHashwan OS, Babekir EA, Abdelateif NM, Bamusa SA, et al.
    BMC Res Notes, 2019 May 23;12(1):282.
    PMID: 31122288 DOI: 10.1186/s13104-019-4319-8
    OBJECTIVE: To investigate the ZAP-70 and CD38 expressions and their combined expressions in Sudanese B-CLL patients and their relationships with clinical and hematological characteristics as well as the disease staging at presentation.

    RESULTS: In the present cross-sectional descriptive study, analysis of ZAP-70 expression showed that 36/110 (32.7%) patients positively expressed ZAP-70 and insignificant higher presentation in intermediate and at advanced stages as well as no correlation was seen with hematological parameters and clinical features compared with negatively ZAP-70, on the other hand, 41/110 (37.3%) were CD38+ and no significant correlation was shown with the stage at presentation, clinical characteristics (except Splenomegaly, P = 0.02) and hematological parameters. However, in combined expressions of both ZAP-70 and CD38 together, 20/110 (18.2%) were concordantly ZAP-70+/CD38+, 53/110 (48.2%) concordantly ZAP-70-/CD38- and 37/110 (33.6%) either ZAP-70+ or CD38+, and these three groups showed insignificant correlation with clinical (except Splenomegaly, P = 0.03) and hematological parameters, and the stage at presentation. Our data showed the combined analysis of these two markers, lead to classify our patients into three subgroups (either concordant positive, negative or discordant expressions) with statistically insignificant correlation with clinical presentation (except Splenomegaly), hematological parameters and stage at presentation of B-CLL patients.

    Matched MeSH terms: Membrane Glycoproteins/blood; Membrane Glycoproteins/genetics*; Membrane Glycoproteins/immunology
  19. Appunni S, Rubens M, Ramamoorthy V, Sharma H, Singh AK, Swarup V, et al.
    Malays J Med Sci, 2020 Dec;27(6):53-67.
    PMID: 33447134 DOI: 10.21315/mjms2020.27.6.6
    Background: Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS.

    Methods: Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package 'affy' was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations.

    Results: GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented.

    Conclusion: The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.

    Matched MeSH terms: Glycoproteins
  20. Swamy KB, Hadi SA, Sekaran M, Pichika MR
    J Med Food, 2014 Nov;17(11):1165-9.
    PMID: 25314134 DOI: 10.1089/jmf.2013.3084
    Synsepalum dulcificum or the "miracle fruit" is well known for its taste-modifying ability. The aim of this review was to assess the published medically beneficial as well as potential characteristics of this fruit. A search in three databases, including PubMed, ScienceDirect, and Google Scholar, was made with appropriate keywords. The resulting articles were screened in different stages based on the title, abstract, and content. A total of nine articles were included in this review. This review summarized the findings of previously published studies on the effects of miracle fruit. The main studied characteristic of the fruit was its effect on the taste receptors, resulting in the sweet sensation when substances with acidic content were ingested. This effect was shown to be related to a glycoprotein called "miraculin." Other beneficial characteristics of this fruit were its antioxidant and anticancer abilities that are due to the various amides existing in the miracle fruit. Apart from the above, the other observed effect of this fruit was its antidiabetic effect that was tested in rats. Further studies should be conducted to establish the findings. The miracle fruit can be a healthy additive due to its unique characteristics, including sour taste sensation modification as well as its antioxidant and antidiabetic effects.
    Matched MeSH terms: Glycoproteins/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links