Displaying publications 81 - 100 of 133 in total

Abstract:
Sort:
  1. Abdalla A. Ab. Rashdi, Mohd Sapuan Salit, Khalina Abdan, Megat Mohamad Hamdan Megat
    MyJurnal
    Fibre reinforced composites have gained use in a variety of applications. The performances of these composites may suffer when the material is exposed to adverse environments for a long period of time. Kenaf fibre reinforced unsaturated polyester composites were subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. Composites specimens containing (10%, 20%, and 30%) weight percentages of fibre were prepared. Water absorption tests were conducted by immersing these specimens in a distilled water bath at 25oC for four months. The tensile properties of the specimens immersed in water were evaluated and compared with the dry composite specimens. A decrease in the tensile properties of the composites was demonstrated, indicating a great loss in the mechanical properties of the water-saturated samples compared to the dry samples. The percentage of moisture uptake was also increased as the percentage of the fibre weight increased due to the high cellulose content. The water absorption pattern of these composites was found to follow the Fickian behaviour.
    Matched MeSH terms: Hibiscus
  2. Aji, I.S., Zinudin, E.S., Khairul, M.Z., Abdan, K., S. M. Sapuan
    MyJurnal
    Electron beam irradiation, without any addition of cross-linking agents, was investigated at varying
    doses of EB-Irradiation to develop an environmentally friendly hybridized kenaf (bast)/ pineapple leaf
    fibre (PALF) bio-composites. Improvement in tensile property of the hybrid was achieved with the result
    showing a direct proportionality relationship between tensile properties and increasing radiation dose.
    Statistical analysis software (SAS) was employed to validate the result. HDPE has been shown to have
    self-cross-linked, enabling interesting tensile properties with irradiation. Statistical analysis validated
    the results obtained and also showed that adequate mixing of fibres and matrix had taken place at 95%
    confidence level. Hybridization and subsequent irradiation increased the tensile strength and modulus
    of HDPE up to 31 and 185%, respectively, at about 100kGy. Meanwhile, SEM was used to view the
    interaction between the fibres and matrix.
    Matched MeSH terms: Hibiscus
  3. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
    Matched MeSH terms: Hibiscus
  4. Zainab Shakir Radif, Aidy Ali
    MyJurnal
    The fracture behaviour represents the most critical issue in the automotive and aerospace engine fields. Thus, the objective of this study was to estimate and analyze the crack criteria by using the
    Mathematical laws that were limited in E 1820 standard and the results affirmed by applying the numerical solutions of ANSYS to estimate the fracture toughness value KIC, besides the energy release rate of biomass composite. The specimens were prepared from different percentage of kenaf mat (KM) and unsaturated polyester resin (UP) 20% KM – 80% UP and 40% KM – 60% UP, respectively, as well the other composite properties which were calculated using the stress-strain data. The fracture characterizations of this composite were carried out using the compact tension (CT) specimen that was commonly used to determine Mode-I fracture properties. The fracture toughness has been found to be independent of pre-crack length. Meanwhile, the tests were performed at room temperature. The numerical simulations of the ANSYS model results demonstrated a good agreement between the experiments computed results of the fracture toughness. The fracture toughness KIC of 20% KM – 80% UP and 40% KM – 60% UP was equivalent to 0.76 MPa√m and 2.0 MPa√m, respectively. Thus, the fracture propagation is dependent on the fibre percentage of the composite. On the other hand, there are unlimited mechanisms of crack paths derived from randomly kenaf mat packs, particularly in the frontal process zone of crack tip.
    Matched MeSH terms: Hibiscus
  5. Abdul Malek Ya’acob, Azhar Abu Bakar, Hanafi Ismail, Khairul Zaman Dahlan
    MyJurnal
    A hybrid composite consisting of untreated kenaf fibre and glass fibre was investigated by varying the fibre glass weight ratios and using interply fabrication method. The expected results were to have better composite performance in terms of its toughness and impact strength as a comparison between the hybrid (kenaf/E-glass fibre composites) and E-GF composites alone. For the purpose of this study, all the samples were prepared using typical sample preparation. Results show that the incorporation of E–glass fibre resulted in brittle failure and a higher amount of E-Glass fibre with low percentage of kenaf fibre causing high strength, low ductile, and low toughness behaviours.
    Matched MeSH terms: Hibiscus
  6. Ng, L.F., Sivakumar, D., Zakaria, K.A., Sivaraos, Bapokutty, O.
    MyJurnal
    Efforts to reduce manufacturing cost and negative environmental impacts have seen the mixture of natural fibre with synthetic fibre in composite structures. However, there are limited studies on the notch effect and fibre orientation on mechanical properties of hybrid fibre metal laminate (FML). In this study, tensile properties of FML with notch and different fibre orientation were investigated. The hybrid FML incorporated with kenaf fibre at the middle layer was compared with FML with three layers of E-glass fibre. Kenaf fibre and E-glass fibre used were in plain woven form. The FML in 2/1 configuration was manufactured through hot press manufacturing method to bond layers of annealed aluminium 5052 to the composite. Tensile test was conducted in a quasi-static manner according to ASTM E8. The results showed FML with three layers of glass fibre exhibited higher tensile strength compared with hybrid FML. However, the introduction of kenaf fibre in hybrid FML reduces the notch and fibre orientation sensitivity compared with glass fibre reinforced FML.
    Matched MeSH terms: Hibiscus
  7. Zuraidah Salleh, Nik Rozlin Nik Masdek, Koay Mei Hyie, Syarifah Yunus
    MyJurnal
    Kenaf fibre is one of the natural fibers that has received much attention of many researchers because of its good properties and flexible use. Kenaf fibre composites have been proposed as interior building materials. In this study, the recycling effect on the kenaf PVC wall panel is focused. The main objective of this study is to determine the mechanical properties of different types of kenaf PVC wall panels. The samples were formulated based on the first and third recycling process. The specimens were subjected to several types of tests, namely, tensile, izod impact, flexural and hardness based on ASTM D3039, ASTM D256, ASTM D7264 and ASTM D785, respectively. The results indicate that the mechanical properties of the third recycled kenaf PVC wall panel product is better than the virgin and first recycled specimen. This shows that the recycling process enhances the mechanical properties of the product. On the other hand, the hardness of the specimen decreases after first recycling due to the reheating effect.
    Matched MeSH terms: Hibiscus
  8. Adole, Adole Michael, Jamaludin Mohamad Yatim, Suhaimi Abubakar Ramli, Athirah Othman, Norazura Azzmi Mizal
    MyJurnal
    (Kenaf fibre is a good reinforcement in fibre polymer composites due to its high strength
    and elastic modulus, high stiffness, low density, low cost and eco-efficient, less health
    hazards, renewability, good mechanical and thermal properties, and biodegradability. It is
    traditionally used for rope, twine, fish net and sacking materials. Recently, it was observed
    that kenaf fibre had huge potentials to replacing synthetic fibre in composites due to the
    rising environmental and ecological issues, thus this awareness has motivated efforts for
    the advancement of new innovative bio-based composites incorporating kenaf fibre for
    various end-use structural applications. This paper presents an overview of the development
    made so far in the area of kenaf fibre and its composites in terms of chemical and microstructural
    properties, mechanical properties, dimensional stability, thermal stability, product
    development and application. Some fundamental issues and suggestions for further research
    in this area are also discussed.
    Matched MeSH terms: Hibiscus
  9. Bajuri, F., Mazlan, N., Ishak, M.R.
    MyJurnal
    Kenaf natural fibre is used as a sustainable form of material to reinforce polymeric composite. However, natural fibres usually do not perform as well as synthetic fibres. Silica nanoparticle is a material with high surface area and its high interfacial interaction with the matrix results in its improvement. In this research, silica nanoparticles were introduced into epoxy resin as a filler material to improve the mechanical properties of the kenaf-reinforced epoxy. They were dispersed into the epoxy using a homogeniser at 3000 rpm for 10 minutes. The composites were fabricated by spreading the silica filled epoxy evenly onto the kenaf mat before hot pressing the resin wet kenaf mat. The results show for flexural properties, composites with higher fibre and silica volume content generally had better properties with specimen 601 (60 vol% kenaf and1 vol% silica) having the highest strength at 68.9 MPa. Compressive properties were erratic with specimen 201 (20 vol% kenaf and 1 vol% silica) having the highest strength at 53.6 MPa.
    Matched MeSH terms: Hibiscus
  10. Chai Hua, T., Norkhairunnisa, M.
    MyJurnal
    This research investigates the strength of kenaf or epoxy composite filled with mesoporous silica and
    studies the hybrid effects between mesoporous silica or kenaf in epoxy matrix. The volume of kenaf
    woven mat is maintained constantly at 7.2vol%, whereas proportion of epoxy is varied with inclusion of
    mesoporous silica and silicon, keeping constant the volume of the composite at 67.5cm3. The proportion
    of mesoporous silica is altered from 0.5vol%, 1.0vol%, 3.0vol% and 5.0vol%, while silicon is kept
    constant at 3.0vol%. A total of 11 specimens were produced, each with its distinctive composition and
    mechanical strengths. Variation of fillers composition affects the mechanical strengths of the composite.
    SEM analysis shows that epoxy bonds well with silicon, kenaf and mesoporous silica. Some de-bonding
    among the components is observed within the composite although there is also some tearing of fibres and
    impregnation of epoxy within fibre, proving that the components have good interaction and do not act
    individually. Flexural test shows that mesoporous silica improves the flexural strength of the composite,
    where the highest value is 35.14MPa, obtained at 5.0vol% Mesoporous Silica in Kenaf/Epoxy (SiaK/
    Ep). It also improves the flexural modulus, where the highest value is 1569.48MPa, obtained at 3.0vol%
    SiaK/Ep. DMA result reveals that adding mesoporous silica increases the Tg of the composite produced.
    Highest Tg is obtained at 0.5vol% Mesoporous Silica in Kenaf/Epoxy modofied Silicon (SiaK/Ep-Si)
    with the value of 87.54°C.
    Matched MeSH terms: Hibiscus
  11. Amran N, Rani AN, Mahmud R, Yin KB
    Pharmacognosy Res, 2016 Jan-Mar;8(1):66-70.
    PMID: 26941539 DOI: 10.4103/0974-8490.171104
    The fruits of Barringtonia racemosa and Hibiscus sabdariffa have been used in the treatment of abscess, ulcer, cough, asthma, and diarrhea as traditional remedy.
    Matched MeSH terms: Hibiscus
  12. Elkafrawy N, Younes K, Naguib A, Badr H, Kamal Zewain S, Kamel M, et al.
    Phytother Res, 2020 Dec;34(12):3379-3387.
    PMID: 32725873 DOI: 10.1002/ptr.6792
    Hypertension is a public health concern that needs immediate attention upon diagnosis. The demand for natural alternatives is on the rise; Hibiscus sabdariffa and Olea europaea are traditionally used for hypertension management in Egypt. In this study, we aimed to investigate the antihypertensive efficacy and safety of two doses of an herbal product of Hibiscus sabdariffa calyxes and Olea europaea leaves (NW Roselle) in Egyptian patients with grade 1 essential hypertension. We equally randomized 134 patients to receive captopril 25 mg, low-dose NW Roselle, or high-dose NW Roselle BID for 8 weeks. No significant decrease was found in systolic blood pressure or diastolic blood pressure when we compared low-dose NW Roselle and high-dose NW Roselle to captopril (p > .05). In all groups, mean reduction in BP at 8 weeks was significant; 16.4/9.9 mmHg (p
    Matched MeSH terms: Hibiscus/chemistry*
  13. Jones P, Devonshire J, Dabek A, Howells C
    Plant Dis, 1998 May;82(5):591.
    PMID: 30857000 DOI: 10.1094/PDIS.1998.82.5.591C
    In September 1997, plants of Hibiscus manihot (locally called nambele) were observed on Vaitupu Island, Tuvalu, exhibiting an angular leaf mosaic and chlorosis that was not always clearly discernible. Electron microscopy of negatively stained sap from affected leaves revealed the presence of numerous isometric virus particles 28 nm in diameter. Poly-acrylamide gel electrophoresis of purified virus gave a single protein band of Mr 38,000 similar to that of the carmoviruses. Immunosorbent electron microscopy tests with antisera kindly provided by N. Spence showed the virus to be hibiscus chlorotic ringspot carmovirus (HCRSV) (1). This virus is also reported from El Salvador, the U.S., Australia, Thailand, Malaysia, Fiji, the Solomon Islands, and Vanuatu. It is not known how the virus reached Tuvalu but we suspect it was via infected cuttings, which were imported for the production of food supplements to combat acute deficiencies of vitamins A and C in the population. The virus is most likely to have been disseminated throughout the islands and atolls of Tuvalu through infected cuttings. Local spread within fields could occur through contaminated hands and cutting implements because of the ease with which the virus is mechanically transmitted. Reference: (1) H. E.Waterworth et al. Phytopathology 66:570, 1976.
    Matched MeSH terms: Hibiscus
  14. Ploetz RC, Palmateer AJ, Geiser DM, Juba JH
    Plant Dis, 2007 May;91(5):639.
    PMID: 30780734 DOI: 10.1094/PDIS-91-5-0639A
    Roselle, Hibiscus sabdariffa var. sabdariffa, is an annual that is grown primarily for its inflated calyx, which is used for drinks and jellies. It is native from India to Malaysia, but was taken at an early date to Africa and is now widely grown in the tropics and subtropics (2). In late 2005, dying plants were noted by a producer in South Florida. Plants wilted, became chlorotic, and developed generally unthrifty, sparse canopies. Internally, conspicuous vascular discoloration was evident in these plants from the roots into the canopy. After 5 days on one-half-strength potato dextrose agar (PDA), salmon-colored fungal colonies grew almost exclusively from surface-disinfested 5 mm2 pieces of vascular tissue. On banana leaf agar, single-spored strains produced the following microscopic characters of Fusarium oxysporum: copious microconidia on monophialides, infrequent falcate macroconidia, and terminal and intercalary chlamydospores. Partial, elongation factor 1-α (EF1-α) sequences were generated for two of the strains, O-2424 and O-2425, and compared with previously reported sequences for the gene (3). Maximum parsimony analysis of sequences showed that both strains fell in a large, previously described clade of the F. oxysporum complex (FOC) that contained strains from agricultural hosts, as well as human clinical specimens (2; clade 3 in Fig. 4); many of the strains in this clade have identical EF1-α sequences. Strains of F. oxysporum recovered from wilted roselle in Egypt, O-647 and O-648 in the Fusarium Research Center collection, were distantly related to the Florida strains. We are not aware of other strains of F. oxysporum from roselle in other international culture collections. Roselle seedlings were inoculated with O-2424 and O-2425 by placing a mycelial plug (5 mm2, PDA) over a small incision 5 cm above the soil line and then covering the site with Parafilm. Parafilm was removed after 1 week, and plants were incubated under ambient temperatures (20 to 32°C) in full sun for an additional 5 weeks (experiment 1) or 7 weeks (experiment 2). Compared with mock-inoculated (wound + Parafilm) control plants, both O-2424 and O-2425 caused significant (P < 0.05) vascular disease (linear extension of discolored xylem above and below wound site) and wilting (subjective 1 to 5 scale); both isolates were recovered from affected plants. F. oxysporum-induced wilt of roselle has been reported in Nigeria (1) and Malaysia (4) where the subspecific epithet f. sp. rosellae was used for the pathogen. We are not aware of reports of this disease elsewhere. To our knowledge, this is the first report of F. oxysporum-induced wilt of roselle in the United States. Research to determine whether the closely related strains in clade 3 of the FOC are generalist plant pathogens (i.e., not formae speciales) is warranted. References: (1) N. A. Amusa et al. Plant Pathol. J. 4:122, 2005. (2) J. Morton. Pages 81-286 in: Fruits of Warm Climates. Creative Resource Systems, Inc., Winterville, NC, 1987. (3) K. O'Donnell et al. J. Clin. Microbiol. 42:5109, 2004. (4) K. H. Ooi and B. Salleh. Biotropia 12:31, 1999.
    Matched MeSH terms: Hibiscus
  15. Abdul Azam F', Razak Z, Md Radzi MKF, Muhamad N, Che Haron CH, Sulong AB
    Polymers (Basel), 2020 Sep 13;12(9).
    PMID: 32933225 DOI: 10.3390/polym12092083
    The incorporation of kenaf fiber fillers into a polymer matrix has been pronounced in the past few decades. In this study, the effect of multiwalled carbon nanotubes (MWCNTs) with a short kenaf fiber (20 mesh) with polypropylene (PP) added was investigated. The melt blending process was performed using an internal mixer to produce polymer composites with different filler contents, while the suitability of this melt composite for the injection molding process was evaluated. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the raw materials. Rheological analyses were conducted by varying the temperature, load factor, and filler content. The results demonstrate a non-Newtonian pseudoplastic behavior in all samples with changed kenaf fillers (10 to 40 wt %) and MWCNT contents (1 to 4 wt %), which confirm the suitability of the feedstock for the injection molding process. The addition of MWCNTs had an immense effect on the viscosity and an enormous reduction in the feedstock flow behavior. The main contribution of this work is the comprehensive observation of the rheological characteristics of newly produced short PP/kenaf composites that were altered after MWCNT additions. This study also presented an adverse effect on the composites containing MWCNTs, indicating a hydrophilic property with improved water absorption stability and the low flammability effect of PP/kenaf/MWCNT composites. This PP/kenaf/MWCNT green composite produced through the injection molding technique has great potential to be used as car components in the automotive industry.
    Matched MeSH terms: Hibiscus
  16. Hanan F, Jawaid M, Paridah MT, Naveen J
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916779 DOI: 10.3390/polym12092052
    In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.
    Matched MeSH terms: Hibiscus
  17. Kamarudin SH, Abdullah LC, Aung MM, Ratnam CT
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33171889 DOI: 10.3390/polym12112604
    New environmentally friendly plasticized poly(lactic acid) (PLA) kenaf biocomposites were obtained through a melt blending process from a combination of epoxidized jatropha oil, a type of nonedible vegetable oil material, and renewable plasticizer. The main objective of this study is to investigate the effect of the incorporation of epoxidized jatropha oil (EJO) as a plasticizer and alkaline treatment of kenaf fiber on the thermal properties of PLA/Kenaf/EJO biocomposites. Kenaf fiber was treated with 6% sodium hydroxide (NaOH) solution for 4 h. The thermal properties of the biocomposites were analyzed using a differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It must be highlighted that the addition of EJO resulted in a decrease of glass transition temperature which aided PLA chain mobility in the blend as predicted. TGA demonstrated that the presence of treated kenaf fiber together with EJO in the blends reduced the rate of decomposition of PLA and enhanced the thermal stability of the blend. The treatment showed a rougher surface fiber in scanning electron microscopy (SEM) micrographs and had a greater mechanical locking with matrix, and this was further supported with Fourier-transform infrared spectroscopy (FTIR) analysis. Overall, the increasing content of EJO as a plasticizer has improved the thermal properties of PLA/Kenaf/EJO biocomposites.
    Matched MeSH terms: Hibiscus
  18. Ahmad Saffian H, Talib MA, Lee SH, Md Tahir P, Lee CH, Ariffin H, et al.
    Polymers (Basel), 2020 Aug 15;12(8).
    PMID: 32824275 DOI: 10.3390/polym12081833
    Mechanical strength, thermal conductivity and electrical breakdown of polypropylene/lignin/kenaf core fiber (PP/L/KCF) composite were studied. PP/L, PP/KCF and PP/L/KCF composites with different fiber and lignin loading was prepared using a compounding process. Pure PP was served as control. The results revealed that tensile and flexural properties of the PP/L/KCF was retained after addition of lignin and kenaf core fibers. Thermal stability of the PP composites improved compared to pure PP polymer. As for thermal conductivity, no significant difference was observed between PP composites and pure PP. However, PP/L/KCF composite has higher thermal diffusivity. All the PP composites produced are good insulating materials that are suitable for building. All PP composites passed withstand voltage test in air and oil state as stipulated in IEC 60641-3 except PP/L in oil state. SEM micrograph showed that better interaction and adhesion between polymer matrix, lignin and kenaf core fibers was observed and reflected on the better tensile strength recorded in PP/L/KCF composite. This study has successfully filled the gap of knowledge on using lignin and kenaf fibers as PP insulator composite materials. Therefore, it can be concluded that PP/Lignin/KCF has high potential as an insulating material.
    Matched MeSH terms: Hibiscus
  19. Lee CH, Padzil FNBM, Lee SH, Ainun ZMA, Abdullah LC
    Polymers (Basel), 2021 Apr 27;13(9).
    PMID: 33925266 DOI: 10.3390/polym13091407
    In this review, the potential of natural fiber and kenaf fiber (KF) reinforced PLA composite filament for fused deposition modeling (FDM) 3D-printing technology is highlighted. Additive manufacturing is a material-processing method in which the addition of materials layer by layer creates a three-dimensional object. Unfortunately, it still cannot compete with conventional manufacturing processes, and instead serves as an economically effective tool for small-batch or high-variety product production. Being preformed of composite filaments makes it easiest to print using an FDM 3D printer without or with minimum alteration to the hardware parts. On the other hand, natural fiber-reinforced polymer composite filaments have gained great attention in the market. However, uneven printing, clogging, and the inhomogeneous distribution of the fiber-matrix remain the main challenges. At the same time, kenaf fibers are one of the most popular reinforcements in polymer composites. Although they have a good record on strength reinforcement, with low cost and light weight, kenaf fiber reinforcement PLA filament is still seldom seen in previous studies. Therefore, this review serves to promote kenaf fiber in PLA composite filaments for FDM 3D printing. To promote the use of natural fiber-reinforced polymer composite in AM, eight challenges must be solved and carried out. Moreover, some concerns arise to achieve long-term sustainability and market acceptability of KF/PLA composite filaments.
    Matched MeSH terms: Hibiscus
  20. Suriani MJ, Zainudin HA, Ilyas RA, Petrů M, Sapuan SM, Ruzaidi CM, et al.
    Polymers (Basel), 2021 May 10;13(9).
    PMID: 34068794 DOI: 10.3390/polym13091532
    The application of natural fibers is rapidly growing in many sectors, such as construction, automobile, and furniture. Kenaf fiber (KF) is a natural fiber that is in demand owing to its eco-friendly and renewable nature. Nowadays, there are various new applications for kenaf, such as in absorbents and building materials. It also has commercial applications, such as in the automotive industry. Magnesium hydroxide (Mg(OH)2) is used as a fire retardant as it is low in cost and has good flame retardancy, while polyester yarn (PET) has high tensile strength. The aim of this study was to determine the horizontal burning rate, tensile strength, and surface morphology of kenaf fiber/PET yarn reinforced epoxy fire retardant composites. The composites were prepared by hybridized epoxy and Mg(OH)2 PET with different amounts of KF content (0%, 20%, 35%, and 50%) using the cold press method. The specimen with 35% KF (epoxy/PET/KF-35) displayed better flammability properties and had the lowest average burning rate of 14.55 mm/min, while epoxy/PET/KF-50 with 50% KF had the highest tensile strength of all the samples. This was due to fewer defects being detected on the surface morphology of epoxy/PET/KF-35 compared to the other samples, which influenced the mechanical properties of the composites.
    Matched MeSH terms: Hibiscus
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links