Displaying publications 81 - 85 of 85 in total

Abstract:
Sort:
  1. Lee HG, William T, Menon J, Ralph AP, Ooi EE, Hou Y, et al.
    BMC Infect Dis, 2016 06 16;16:296.
    PMID: 27306100 DOI: 10.1186/s12879-016-1640-x
    BACKGROUND: Central nervous system (CNS) infections are a significant contributor to morbidity and mortality globally. However, most published studies have been conducted in developed countries where the epidemiology and aetiology differ significantly from less developed areas. Additionally, there may be regional differences due to variation in the socio-economic levels, public health services and vaccination policies. Currently, no prospective studies have been conducted in Sabah, East Malaysia to define the epidemiology and aetiology of CNS infections. A better understanding of these is essential for the development of local guidelines for diagnosis and management.

    METHODS: We conducted a prospective observational cohort study in patients aged 12 years and older with suspected central nervous system infections at Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia between February 2012 and March 2013. Cerebrospinal fluid was sent for microscopy, biochemistry, bacterial and mycobacterial cultures, Mycobacterium tuberculosis polymerase chain reaction (PCR), and multiplex and MassCode PCR for various viral and bacterial pathogens.

    RESULTS: A total of 84 patients with clinically suspected meningitis and encephalitis were enrolled. An aetiological agent was confirmed in 37/84 (44 %) of the patients. The most common diagnoses were tuberculous meningitis (TBM) (41/84, 48.8 %) and cryptococcal meningoencephalitis (14/84, 16.6 %). Mycobacterium tuberculosis was confirmed in 13/41 (31.7 %) clinically diagnosed TBM patients by cerebrospinal fluid PCR or culture. The acute case fatality rate during hospital admission was 16/84 (19 %) in all patients, 4/43 (9 %) in non-TBM, and 12/41 (29 %) in TBM patients respectively (p = 0.02).

    CONCLUSION: TBM is the most common cause of CNS infection in patients aged 12 years or older in Kota Kinabalu, Sabah, Malaysia and is associated with high mortality and morbidity. Further studies are required to improve the management and outcome of TBM.

    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  2. Hossain MA, Ali ME, Abd Hamid SB, Asing, Mustafa S, Mohd Desa MN, et al.
    J Agric Food Chem, 2016 Aug 17;64(32):6343-54.
    PMID: 27501408 DOI: 10.1021/acs.jafc.6b02224
    Beef, buffalo, and pork adulteration in the food chain is an emerging and sensitive issue. Current molecular techniques to authenticate these species depend on polymerase chain reaction (PCR) assays involving long and single targets which break down under natural decomposition and/or processing treatments. This novel multiplex polymerase chain reaction-restriction fragment length polymorphism assay targeted two different gene sites for each of the bovine, buffalo, and porcine materials. This authentication ensured better security, first through a complementation approach because it is highly unlikely that both sites will be missing under compromised states, and second through molecular fingerprints. Mitochondrial cytochrome b and ND5 genes were targeted, and all targets (73, 90, 106, 120, 138, and 146 bp) were stable under extreme boiling and autoclaving treatments. Target specificity and authenticity were ensured through cross-amplification reaction and restriction digestion of PCR products with AluI, EciI, FatI, and CviKI-1 enzymes. A survey of Malaysian frankfurter products revealed rampant substitution of beef with buffalo but purity in porcine materials.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction/methods*
  3. Tang TH, Ahmed SA, Musa M, Zainuddin ZF
    World J Microbiol Biotechnol, 2013 Dec;29(12):2389-95.
    PMID: 23807412 DOI: 10.1007/s11274-013-1407-0
    Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction*
  4. Zeti Norfidiyati Salmuna, Murnihayati Hassan, Habsah Hasan, Zakuan Zainy Deris
    MyJurnal
    Carpanenamase-producing Enterobacteriaceae (CPE) has emerged as a threat to hospitalized patients. Phenotypic test such as Modified hodge test was less sensitive and specific especially to detect blaNDM-1 which is the most predominant genotype in this region. Nucleic acid amplification technology offers improved specificity and sensitivity. Failed amplification due to the presence of inhibitors is a limitation. In this study, we tried to use previous method described by Villumseen et al with some modification using another DNA extraction kit. Methods: Ten mls of sterile whole blood taken from nearly expired blood bag from blood bank was spiked with 200 μl of 0.5mcFarland bacterial suspension from thirty-six confirmed isolates of blaNDM-1 carbapenamase-producing Klebsiella pneumoniae in an aerobic Bactec Plus and incubated until the growth was detected. The blood specimen was subjected to DNA extraction method using Macherey-Nachel, Nucleospin® Blood QuickPure followed with multiplex PCR. Results: Out of the 36 isolates, 12 isolates revealed blaNDM-1 , 9 isolates revealed blaNDM-1 and blaOXA-48, 7 isolates revealed blaNDM-1, blaVIM and blaKPC genotypes that were amplified at cycle threshold of less than 30. Another 8 isolates could not pick up any genotypes possibly due to pipetting error as all the internal control were amplified. Eight true negative gram negative isolates underwent same procedure and none amplified at a cycle threshold less than 30. Conclusion: This modified method was proved to give a high yield of CPE genotypes with the cycle threshold was set at less than or equal to 30 and able to overcome the presence of PCR inhibitors.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
  5. Suria, M. S., Adlin Azlina, A. K., Mohd Afendy, A. T., Zamri, I.
    MyJurnal
    Shiga toxin-producing E. coli (STEC) is an important foodborne pathogen causing diarrhea, hemorrhagic colitis and hemolytic-uremic syndrome in humans. STEC is an implicated in the vast majority of outbreaks, widely via consumption of STEC contaminated beef, as important vehicle of transmission of this organism to human. The E. coli O157:H7 serotype is traditionally identified by serological identification of the somatic antigen (O157) and structural flagella (H7). In this study, the bacteria were identified as STEC serotype O157:H7 with three primer pairs that amplified fragments of secD, rfbE and fliC genes in PCR assays. These primer pairs specifically amplified different sizes of target genes: a 244bp region of the E. coli diagnostic marker gene (secD); a 317bp region of the O157 lipopolysacharide (LPS) gene (rfbE); and a 381bp region of the H7 flagellin gene (fliC). The singleplex, duplex and triplex PCR assay developed in this study have a sensitivity limit at 2.8 x 103, 2.8 x 105 and 2.8 x 107 CFU/ml of E. coli O157:H7, respectively. Sensitivity to detect trace amount of E. coli O157:H7 DNA was reduced as the number of primer used was increased for competing to the same DNA template.
    Matched MeSH terms: Multiplex Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links