Displaying publications 81 - 100 of 113 in total

Abstract:
Sort:
  1. Ho CL
    Genomics, 2020 03;112(2):1536-1544.
    PMID: 31494197 DOI: 10.1016/j.ygeno.2019.09.002
    Red algae are a major source of marine sulfated galactans. In this study, orthologs and inparalogs from seven red algae were analyzed and compared with the aim to discover differences in algal galactan biosynthesis and related pathways of these algae. Red algal orthologs for putative carbohydrate sulfotransferases were found to be prevalent in Porphyridium purpureum, Florideophytes and Bangiophytes, while red algal orthologs for putative chondroitin sulfate synthases, sulfurylases, and porphyranases /carrageenases were found exclusively in Florideophytes and Bangiophytes. The acquirement of these genes could have happened after the divergence from Cyanidiales red algae. Cyanidiales red algae were found to have more number and types of putative sulfate permeases, suggesting that these genes could have been acquired in adaptation to the environmental stresses and biogeochemistry of respective habitats. The findings of this study shed lights on the evolution of different homeostasis mechanisms by the early and late diverging red algal orders.
    Matched MeSH terms: Plant Proteins/genetics
  2. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: Plant Proteins/genetics*
  3. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
    Matched MeSH terms: Plant Proteins/genetics*
  4. Azaman SNA, Satharasinghe DA, Tan SW, Nagao N, Yusoff FM, Yeap SK
    Genes (Basel), 2020 09 25;11(10).
    PMID: 32992970 DOI: 10.3390/genes11101131
    Chlorella is a popular microalga with robust physiological and biochemical characteristics, which can be cultured under various conditions. The exploration of the small RNA content of Chlorella could improve strategies for the enhancement of metabolite production from this microalga. In this study, stress was introduced to the Chlorella sorokiniana culture to produce high-value metabolites such as carotenoids and phenolic content. The small RNA transcriptome of C. sorokiniana was sequenced, focusing on microRNA (miRNA) content. From the analysis, 98 miRNAs were identified in cultures subjected to normal and stress conditions. The functional analysis result showed that the miRNA targets found were most often involved in the biosynthesis of secondary metabolites, followed by protein metabolism, cell cycle, and porphyrin and chlorophyll metabolism. Furthermore, the biosynthesis of secondary metabolites such as carotenoids, terpenoids, and lipids was found mostly in stress conditions. These results may help to improve our understanding of regulatory mechanisms of miRNA in the biological and metabolic process of Chlorella species. It is important and timely to determine the true potential of this microalga species and to support the potential for genetic engineering of microalgae as they receive increasing focus for their development as an alternative source of biofuel, food, and health supplements.
    Matched MeSH terms: Plant Proteins/genetics*
  5. Sahebi M, Hanafi MM, Siti Nor Akmar A, Rafii MY, Azizi P, Idris AS
    Gene, 2015 Feb 10;556(2):170-81.
    PMID: 25479011 DOI: 10.1016/j.gene.2014.11.055
    Silicon (Si) plays an important role in reducing plant susceptibility against a variety of different biotic and abiotic stresses; and also has an important regulatory role in soil to avoid heavy metal toxicity and providing suitable growing conditions for plants. A full-length cDNAs of 696bp of serine-rich protein was cloned from mangrove plant (Rhizophora apiculata) by amplification of cDNA ends from an expressed sequence tag homologous to groundnut (Arachis hypogaea), submitted to NCBI (KF211374). This serine-rich protein gene encodes a deduced protein of 223 amino acids. The transcript titre of the serine-rich protein was found to be strongly enriched in roots compared with the leaves of two month old mangrove plants and expression level of this serine-rich protein was found to be strongly induced when the mangrove seedlings were exposed to SiO2. Expression of the serine-rich protein transgenic was detected in transgenic Arabidopsis thaliana, where the amount of serine increased from 1.02 to 37.8mg/g. The same trend was also seen in Si content in the roots (14.3%) and leaves (7.4%) of the transgenic A. thaliana compared to the wild-type plants under Si treatment. The biological results demonstrated that the accumulation of the serine amino acid in the vegetative tissues of the transgenic plants enhanced their ability to absorb and accumulate more Si in the roots and leaves and suggests that the serine-rich protein gene has potential for use in genetic engineering of different stress tolerance characteristics.
    Matched MeSH terms: Plant Proteins/genetics*
  6. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV
    Gene, 2015 Oct 15;571(1):71-80.
    PMID: 26115767 DOI: 10.1016/j.gene.2015.06.050
    MicroRNAs (miRNAs) are a class of small, endogenous non-coding RNAs that negatively regulate gene expression, resulting in the silencing of target mRNA transcripts through mRNA cleavage or translational inhibition. MiRNAs play significant roles in various biological and physiological processes in plants. However, the miRNA-mediated gene regulatory network in pineapple, the model tropical non-climacteric fruit, remains largely unexplored. Here, we report a complete list of pineapple mature miRNAs obtained from high-throughput small RNA sequencing and precursor miRNAs (pre-miRNAs) obtained from ESTs. Two small RNA libraries were constructed from pineapple fruits and leaves, respectively, using Illumina's Solexa technology. Sequence similarity analysis using miRBase revealed 579,179 reads homologous to 153 miRNAs from 41 miRNA families. In addition, a pineapple fruit transcriptome library consisting of approximately 30,000 EST contigs constructed using Solexa sequencing was used for the discovery of pre-miRNAs. In all, four pre-miRNAs were identified (MIR156, MIR399, MIR444 and MIR2673). Furthermore, the same pineapple transcriptome was used to dissect the function of the miRNAs in pineapple by predicting their putative targets in conjunction with their regulatory networks. In total, 23 metabolic pathways were found to be regulated by miRNAs in pineapple. The use of high-throughput sequencing in pineapples to unveil the presence of miRNAs and their regulatory pathways provides insight into the repertoire of miRNA regulation used exclusively in this non-climacteric model plant.
    Matched MeSH terms: Plant Proteins/genetics*
  7. Guan Q, Yu J, Zhu W, Yang B, Li Y, Zhang L, et al.
    Gene, 2018 Mar 01;645:60-68.
    PMID: 29274907 DOI: 10.1016/j.gene.2017.12.045
    Ultraviolet-B (UVB) irradiation induces oxidative stress in plant cells due to the generation of excessive reactive oxygen species. Morus alba L. (M. abla) is an important medicinal plant used for the treatment of human diseases. Also, its leaves are widely used as food for silkworms. In our previous research, we found that a high level of UVB irradiation with dark incubation led to the accumulation of secondary metabolites in M. abla leaf. The aim of the present study was to describe and compare M. alba leaf transcriptomics with different treatments (control, UVB, UVB+dark). Leaf transcripts from M. alba were sequenced using an Illumina Hiseq 2000 system, which produced 14.27Gb of data including 153,204,462 paired-end reads among the three libraries. We de novo assembled 133,002 transcripts with an average length of 1270bp and filtered 69,728 non-redundant unigenes. A similarity search was performed against the non-redundant National Center of Biotechnology Information (NCBI) protein database, which returned 41.08% hits. Among the 20,040 unigenes annotated in UniProtKB/SwissProt database, 16,683 unigenes were assigned 102,232 gene ontology terms and 6667 unigenes were identified in 287 known metabolic pathways. Results of differential gene expression analysis together with real-time quantitative PCR tests indicated that UVB irradiation with dark incubation enhanced the flavonoid biosynthesis in M. alba leaf. Our findings provided a valuable proof for a better understanding of the metabolic mechanism under abiotic stresses in M. alba leaf.
    Matched MeSH terms: Plant Proteins/genetics*
  8. Neik TX, Chai JY, Tan SY, Sudo MPS, Cui Y, Jayaraj J, et al.
    G3 (Bethesda), 2019 09 04;9(9):2941-2950.
    PMID: 31292156 DOI: 10.1534/g3.119.400021
    Weedy crop relatives are among the world's most problematic agricultural weeds, and their ability to rapidly evolve can be enhanced by gene flow from both domesticated crop varieties and wild crop progenitor species. In this study, we examined the role of modern commercial crop cultivars, traditional landraces, and wild relatives in the recent emergence and proliferation of weedy rice in East Malaysia on the island of Borneo. This region of Malaysia is separated from the Asian continent by the South China Sea, and weedy rice has become a major problem there more recently than on the Malaysian peninsular mainland. Using 24 polymorphic SSR loci and genotype data from the awn-length domestication gene An-1, we assessed the genetic diversity, population structure and potential origins of East Malaysian weeds; 564 weedy, cultivated and wild rice accessions were analyzed from samples collected in East Malaysia, Peninsular Malaysia and neighboring countries. While there is considerable evidence for contributions of Peninsular Malaysian weed ecotypes to East Malaysian populations, we find that local crop cultivars and/or landraces from neighboring countries are also likely contributors to the weedy rice infestations. These findings highlight the implications of genetic admixture from different cultivar source populations in the spread of weedy crop relatives and the urgent need for preventive measurements to maintain sustainable crop yields.
    Matched MeSH terms: Plant Proteins/genetics
  9. Ng ZX, Chua KH, Kuppusamy UR
    Food Chem, 2014 Apr 1;148:155-61.
    PMID: 24262540 DOI: 10.1016/j.foodchem.2013.10.025
    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd.
    Matched MeSH terms: Plant Proteins/genetics
  10. Ngoh YY, Lim TS, Gan CY
    Enzyme Microb Technol, 2016 Jul;89:76-84.
    PMID: 27233130 DOI: 10.1016/j.enzmictec.2016.04.001
    The objective of this study was to screen and identify α-amylase inhibitor peptides from Pinto bean. Five Pinto bean bioactive peptides were successfully identified: PPHMLP (P1), PLPWGAGF (P3), PPHMGGP (P6), PLPLHMLP (P7) and LSSLEMGSLGALFVCM (P9). Based on ELISA results, their promising optical density values were 1.27; 3.71, 1.67, 3.20 and 1.03, respectively, which indicated the binding interaction between the peptide and α-amylase occurred. The highest inhibitory activity (66.72%) of the chemically synthesized peptide was shown in SyP9 followed by SyP1 (48.86%), SyP3 (31.17%), SyP7 (27.88%) and SyP6 (23.96%). The IC50 values were 1.97, 8.96, 14.63, 18.45 and 20.56mgml(-1), respectively. Structure activity relationship study revealed that α-amylase was inhibited due to its residues of Ala230, Asp229, Asp326, Tyr54, Met195, Leu194 and His233 were bound. On the other hand, the residues of PBBP (i.e. histidine, proline and methionine) were found to have the highest potency in the binding interaction.
    Matched MeSH terms: Plant Proteins/genetics
  11. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Plant Proteins/genetics*
  12. Ho CL, Nguyen PD, Harikrishna JA, Rahim RA
    DNA Seq., 2008 Feb;19(1):73-7.
    PMID: 17852357
    The vacuolar-type H+ -ATPase (V-ATPase) is a multimeric enzyme with diverse functions in plants such as nutrient transport, flowering, stress tolerance, guard cell movement and development. A partial sequence of V-ATPase proteolipid was identified among the expressed sequence tags (ESTs) generated from Acanthus ebracteatus, and selected for full-length sequencing. The 876-nucleotide cDNA consists of an open reading frame of 165 amino acids. The deduced amino acid sequence displays high similarity (81%) with its homologs from Arabidopsis thaliana, Avecinnia marina and Gossypium hirsutum with the four transmembrane domains characteristics of the 16 kDa proteolipid subunit c of V-ATPase well conserved in this protein. Southern analysis revealed the existence of several members of proteolipid subunit c of V-ATPase in A. ebracteatus. The mRNA of this gene was detected in leaf, floral, stem and root tissues, however, the expression level was lower in stem and root tissues.
    Matched MeSH terms: Plant Proteins/genetics*
  13. Makita Y, Ng KK, Veera Singham G, Kawashima M, Hirakawa H, Sato S, et al.
    DNA Res, 2017 Apr 01;24(2):159-167.
    PMID: 28431015 DOI: 10.1093/dnares/dsw056
    Natural rubber has unique physical properties that cannot be replaced by products from other latex-producing plants or petrochemically produced synthetic rubbers. Rubber from Hevea brasiliensis is the main commercial source for this natural rubber that has a cis-polyisoprene configuration. For sustainable production of enough rubber to meet demand elucidation of the molecular mechanisms involved in the production of latex is vital. To this end, we firstly constructed rubber full-length cDNA libraries of RRIM 600 cultivar and sequenced around 20,000 clones by the Sanger method and over 15,000 contigs by Illumina sequencer. With these data, we updated around 5,500 gene structures and newly annotated around 9,500 transcription start sites. Second, to elucidate the rubber biosynthetic pathways and their transcriptional regulation, we carried out tissue- and cultivar-specific RNA-Seq analysis. By using our recently published genome sequence, we confirmed the expression patterns of the rubber biosynthetic genes. Our data suggest that the cytoplasmic mevalonate (MVA) pathway is the main route for isoprenoid biosynthesis in latex production. In addition to the well-studied polymerization factors, we suggest that rubber elongation factor 8 (REF8) is a candidate factor in cis-polyisoprene biosynthesis. We have also identified 39 transcription factors that may be key regulators in latex production. Expression profile analysis using two additional cultivars, RRIM 901 and PB 350, via an RNA-Seq approach revealed possible expression differences between a high latex-yielding cultivar and a disease-resistant cultivar.
    Matched MeSH terms: Plant Proteins/genetics
  14. Ravanfar SA, Aziz MA, Saud HM, Abdullah JO
    Curr Genet, 2015 Nov;61(4):653-63.
    PMID: 25986972 DOI: 10.1007/s00294-015-0494-x
    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.
    Matched MeSH terms: Plant Proteins/genetics*
  15. Ashkani S, Rafii MY, Shabanimofrad M, Ghasemzadeh A, Ravanfar SA, Latif MA
    Crit Rev Biotechnol, 2016;36(2):353-67.
    PMID: 25394538 DOI: 10.3109/07388551.2014.961403
    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.
    Matched MeSH terms: Plant Proteins/genetics
  16. Azizi P, Osman M, Hanafi MM, Sahebi M, Rafii MY, Taheri S, et al.
    Crit Rev Biotechnol, 2019 Nov;39(7):904-923.
    PMID: 31303070 DOI: 10.1080/07388551.2019.1632257
    A large number of rice agronomic traits are complex, multi factorial and polygenic. As the mechanisms and genes determining grain size and yield are largely unknown, the identification of regulatory genes related to grain development remains a preeminent approach in rice genetic studies and breeding programs. Genes regulating cell proliferation and expansion in spikelet hulls and participating in endosperm development are the main controllers of rice kernel elongation and grain size. We review here and discuss recent findings on genes controlling rice grain size and the mechanisms, epialleles, epigenomic variation, and assessment of controlling genes using genome-editing tools relating to kernel elongation.
    Matched MeSH terms: Plant Proteins/genetics
  17. Yeang HY, Hamilton RG, Bernstein DI, Arif SA, Chow KS, Loke YH, et al.
    Clin Exp Allergy, 2006 Aug;36(8):1078-86.
    PMID: 16911364 DOI: 10.1111/j.1365-2222.2006.02531.x
    BACKGROUND:
    Hevea brasiliensis latex serum is commonly used as the in vivo and in vitro reference antigen for latex allergy diagnosis as it contains the full complement of latex allergens.

    OBJECTIVE:
    This study quantifies the concentrations of the significant allergens in latex serum and examines its suitability as an antigen source in latex allergy diagnosis and immunotherapy.

    METHODS:
    The serum phase was extracted from centrifuged latex that was repeatedly freeze-thawed or glycerinated. Quantitation of latex allergens was performed by two-site immunoenzymetric assays. The abundance of RNA transcripts of the latex allergens was estimated from the number of their clones in an Expressed Sequence Tags library.

    RESULTS:
    The latex allergens, Hev b 1, 2, 3, 4, 5, 6, 7 and 13, were detected in freeze-thawed and glycerinated latex serum at levels ranging from 75 (Hev b 6) to 0.06 nmol/mg total proteins (Hev b 4). Hev b 6 content in the latex was up to a thousand times higher than the other seven latex allergens, depending on source and/or preparation procedure. Allergen concentration was reflected in the abundance of mRNA transcripts. When used as the antigen, latex serum may bias the outcome of latex allergy diagnostic tests towards sensitization to Hev b 6. Tests that make use of latex serum may fail to detect latex-specific IgE reactivity in subjects who are sensitized only to allergens that are present at low concentrations.

    CONCLUSION:
    Latex allergy diagnostics and immunotherapy that use whole latex serum as the antigen source may not be optimal because of the marked imbalance of its constituent allergens.
    Matched MeSH terms: Plant Proteins/genetics
  18. Habib MAH, Gan CY, Abdul Latiff A, Ismail MN
    Biochem. Cell Biol., 2018 12;96(6):818-824.
    PMID: 30058361 DOI: 10.1139/bcb-2018-0020
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in modern society. Post-translational modifications (PTMs) of the latex proteins are important for the stability and functionality of the proteins. In this study, latex proteins were acquired from the C-serum, lutoids, and rubber particle layers of latex without using prior enrichment steps; they were fragmented using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and electron-transfer dissociation (ETD) activation methods. PEAKS 7 were used to search for unspecified PTMs, followed by analysis through PTM prediction tools to crosscheck both results. There were 73 peptides in 47 proteins from H. brasiliensis protein sequences derived from UniProtKB were identified and predicted to be post-translationally modified. The peptides with PTMs identified include phosphorylation, lysine acetylation, N-terminal acetylation, hydroxylation, and ubiquitination. Most of the PTMs discovered have yet to be reported in UniProt, which would provide great assistance in the research of the functional properties of H. brasiliensis latex proteins, as well as being useful biomarkers. The data are available via the MassIVE repository with identifier MSV000082419.
    Matched MeSH terms: Plant Proteins/genetics
  19. Habib MA, Yuen GC, Othman F, Zainudin NN, Latiff AA, Ismail MN
    Biochem. Cell Biol., 2017 04;95(2):232-242.
    PMID: 28177774 DOI: 10.1139/bcb-2016-0144
    The natural rubber latex extracted from the bark of Hevea brasiliensis plays various important roles in today's modern society. Following ultracentrifugation, the latex can be separated into 3 layers: C-serum, lutoids, and rubber particles. Previous studies have shown that a large number of proteins are present in these 3 layers. However, a complete proteome for this important plant is still unavailable. Protein sequences have been recently translated from the completed draft genome database of H. brasiliensis, leading to the creation of annotated protein databases of the following H. brasiliensis biosynthetic pathways: photosynthesis, latex allergens, rubberwood formation, latex biosynthesis, and disease resistance. This research was conducted to identify the proteins contained within the latex by way of de novo sequencing from mass spectral data obtained from the 3 layers of the latex. Peptides from these proteins were fragmented using collision-induced dissociation, higher-energy collisional dissociation, and electron-transfer dissociation activation methods. A large percentage of proteins from the biosynthetic pathways (63% to 100%) were successfully identified. In addition, a total of 1839 unique proteins were identified from the whole translated draft genome database (AnnHBM).
    Matched MeSH terms: Plant Proteins/genetics
  20. Chan SN, Abu Bakar N, Mahmood M, Ho CL, Shaharuddin NA
    Biomed Res Int, 2014;2014:973790.
    PMID: 25853138 DOI: 10.1155/2014/973790
    Phytocystatin, a type of protease inhibitor (PI), plays major roles in plant defense mechanisms and has been reported to show antipathogenic properties and plant stress tolerance. Recombinant plant PIs are gaining popularity as potential candidates in engineering of crop protection and in synthesizing medicine. It is therefore crucial to identify PI from novel sources like Curcuma longa as it is more effective in combating against pathogens due to its novelty. In this study, a novel cDNA fragment encoding phytocystatin was isolated using degenerate PCR primers, designed from consensus regions of phytocystatin from other plant species. A full-length cDNA of the phytocystatin gene, designated CypCl, was acquired using 5'/3' rapid amplification of cDNA ends method and it has been deposited in NCBI database (accession number KF545954.1). It has a 687 bp long open reading frame (ORF) which encodes 228 amino acids. BLAST result indicated that CypCl is similar to cystatin protease inhibitor from Cucumis sativus with 74% max identity. Sequence analysis showed that CypCl contains most of the motifs found in a cystatin, including a G residue, LARFAV-, QxVxG sequence, PW dipeptide, and SNSL sequence at C-terminal extension. Phylogenetic studies also showed that CypCl is related to phytocystatin from Elaeis guineensis.
    Matched MeSH terms: Plant Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links