Displaying publications 81 - 85 of 85 in total

Abstract:
Sort:
  1. Aslan MF, Hasikin K, Yusefi A, Durdu A, Sabanci K, Azizan MM
    Front Public Health, 2022;10:855994.
    PMID: 35734764 DOI: 10.3389/fpubh.2022.855994
    Artificial intelligence researchers conducted different studies to reduce the spread of COVID-19. Unlike other studies, this paper isn't for early infection diagnosis, but for preventing the transmission of COVID-19 in social environments. Among the studies on this is regarding social distancing, as this method is proven to prevent COVID-19 to be transmitted from one to another. In the study, Robot Operating System (ROS) simulates a shopping mall using Gazebo, and customers are monitored by Turtlebot and Unmanned Aerial Vehicle (UAV, DJI Tello). Through frames analysis captured by Turtlebot, a particular person is identified and followed at the shopping mall. Turtlebot is a wheeled robot that follows people without contact and is used as a shopping cart. Therefore, a customer doesn't touch the shopping cart that someone else comes into contact with, and also makes his/her shopping easier. The UAV detects people from above and determines the distance between people. In this way, a warning system can be created by detecting places where social distance is neglected. Histogram of Oriented-Gradients (HOG)-Support Vector Machine (SVM) is applied by Turtlebot to detect humans, and Kalman-Filter is used for human tracking. SegNet is performed for semantically detecting people and measuring distance via UAV. This paper proposes a new robotic study to prevent the infection and proved that this system is feasible.
    Matched MeSH terms: Robotics*
  2. Alshammari RFN, Abd Rahman AH, Arshad H, Albahri OS
    Sensors (Basel), 2023 Dec 05;23(24).
    PMID: 38139465 DOI: 10.3390/s23249619
    Existing methods for scoring student presentations predominantly rely on computer-based implementations and do not incorporate a robotic multi-classification model. This limitation can result in potential misclassification issues as these approaches lack active feature learning capabilities due to fixed camera positions. Moreover, these scoring methods often solely focus on facial expressions and neglect other crucial factors, such as eye contact, hand gestures and body movements, thereby leading to potential biases or inaccuracies in scoring. To address these limitations, this study introduces Robotics-based Presentation Skill Scoring (RPSS), which employs a multi-model analysis. RPSS captures and analyses four key presentation parameters in real time, namely facial expressions, eye contact, hand gestures and body movements, and applies the fuzzy Delphi method for criteria selection and the analytic hierarchy process for weighting, thereby enabling decision makers or managers to assign varying weights to each criterion based on its relative importance. RPSS identifies five academic facial expressions and evaluates eye contact to achieve a comprehensive assessment and enhance its scoring accuracy. Specific sub-models are employed for each presentation parameter, namely EfficientNet for facial emotions, DeepEC for eye contact and an integrated Kalman and heuristic approach for hand and body movements. The scores are determined based on predefined rules. RPSS is implemented on a robot, and the results highlight its practical applicability. Each sub-model is rigorously evaluated offline and compared against benchmarks for selection. Real-world evaluations are also conducted by incorporating a novel active learning approach to improve performance by leveraging the robot's mobility. In a comparative evaluation with human tutors, RPSS achieves a remarkable average agreement of 99%, showcasing its effectiveness in assessing students' presentation skills.
    Matched MeSH terms: Robotics*
  3. Zafar F, Malik SA, Ali T, Daraz A, Afzal AR, Bhatti F, et al.
    PLoS One, 2024;19(2):e0298624.
    PMID: 38354203 DOI: 10.1371/journal.pone.0298624
    In this paper, we propose two different control strategies for the position control of the ball of the ball and beam system (BBS). The first control strategy uses the proportional integral derivative-second derivative with a proportional integrator PIDD2-PI. The second control strategy uses the tilt integral derivative with filter (TID-F). The designed controllers employ two distinct metaheuristic computation techniques: grey wolf optimization (GWO) and whale optimization algorithm (WOA) for the parameter tuning. We evaluated the dynamic and steady-state performance of the proposed control strategies using four performance indices. In addition, to analyze the robustness of proposed control strategies, a comprehensive comparison has been performed with a variety of controllers, including tilt integral-derivative (TID), fractional order proportional integral derivative (FOPID), integral-proportional derivative (I-PD), proportional integral-derivative (PI-D), and proportional integral proportional derivative (PI-PD). By comparing different test cases, including the variation in the parameters of the BBS with disturbance, we examine step response, set point tracking, disturbance rejection analysis, and robustness of proposed control strategies. The comprehensive comparison of results shows that WOA-PIDD2-PI-ISE and GWO-TID-F- ISE perform superior. Moreover, the proposed control strategies yield oscillation-free, stable, and quick response, which confirms the robustness of the proposed control strategies to the disturbance, parameter variation of BBS, and tracking performance. The practical implementation of the proposed controllers can be in the field of under actuated mechanical systems (UMS), robotics and industrial automation. The proposed control strategies are successfully tested in MATLAB simulation.
    Matched MeSH terms: Robotics*
  4. Huang Q, Zhao G, Chen Y, Wu P, Li S, Peng C, et al.
    J Urol, 2023 Jan;209(1):99-110.
    PMID: 36194169 DOI: 10.1097/JU.0000000000002952
    PURPOSE: We introduce an intrapericardial control technique using a robotic approach in the surgical treatment of renal tumor with level IV inferior vena cava thrombus to decrease the severe complications associated with cardiopulmonary bypass and deep hypothermic circulatory arrest.

    MATERIALS AND METHODS: Eight patients with level IV inferior vena cava thrombi not extending into the atrium underwent transabdominal-transdiaphragmatic robot-assisted inferior vena cava thrombectomy obviating cardiopulmonary bypass/deep hypothermic circulatory arrest (cardiopulmonary bypass-free group) by an expert team comprising urological, hepatobiliary, and cardiovascular surgeons. The central diaphragm tendon and pericardium were transabdominally dissected until the intrapericardial inferior vena cava were exposed and looped proximal to the cranial end of the thrombi under intraoperative ultrasound guidance. As controls, 14 patients who underwent robot-assisted inferior vena cava thrombectomy with cardiopulmonary bypass (cardiopulmonary bypass group) and 25 patients who underwent open thrombectomy with cardiopulmonary bypass/deep hypothermic circulatory arrest (cardiopulmonary bypass/deep hypothermic circulatory arrest group) were included. Clinicopathological, operative, and survival outcomes were retrospectively analyzed.

    RESULTS: Eight robot-assisted inferior vena cava thrombectomies were successfully performed without cardiopulmonary bypass, with 1 open conversion. The median operation time and first porta hepatis occlusion time were shorter, and estimated blood loss was lower in the cardiopulmonary bypass-free group as compared to the cardiopulmonary bypass group (540 vs 586.5 minutes, 16.5 vs 38.5. minutes, and 2,050 vs 3,500 mL, respectively). Severe complications (level IV-V) were also lower in the cardiopulmonary bypass-free group than in cardiopulmonary bypass and cardiopulmonary bypass/deep hypothermic circulatory arrest groups (25% vs 50% vs 40%). Oncologic outcomes were comparable among the 3 groups in short-term follow-up.

    CONCLUSIONS: Pure transabdominal-transdiaphragmatic robot-assisted inferior vena cava thrombectomy without cardiopulmonary bypass/deep hypothermic circulatory arrest represents as an alternative minimally invasive approach for selected level IV inferior vena cava thrombi.

    Matched MeSH terms: Robotics*
  5. Du J, Salim NAM, Zakaria WZW, Gu Y, Ling J
    Comput Intell Neurosci, 2022;2022:4971849.
    PMID: 35860639 DOI: 10.1155/2022/4971849
    In light of the ongoing occurrence of epidemics, the general populace frequently makes the decision to curtail their nomadic lifestyle in order to protect both their health and their safety. This has resulted in a number of issues, the most notable of which are the drop in the people's living happiness index and the poor business that the tourism industry has been experiencing as a result. Therefore, the idea of "cloud tourism" is undoubtedly the first candidate for the tourism industry, and in order to meet the requirements of cloud tourism, it is necessary to have an entirely new system to serve this, of which the scenic guide robot is an important part. At the same time, the quickening development of 5G technology offers solutions that may be put into practice for the multifurther IoT's expansion in smart cities. People will be able to experience the real outdoors without having to leave their homes, which will improve the people's well-being and alleviate the chilly status quo in the tourism industry. This is the plan, and it will be accomplished through the use of innovative guide robots that will make the experience more convenient and reliable.
    Matched MeSH terms: Robotics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links