Displaying publications 81 - 100 of 532 in total

Abstract:
Sort:
  1. Van Tung T, Tran QB, Phuong Thao NT, Vi LQ, Hieu TT, Le S, et al.
    Chemosphere, 2020 Dec 15;268:129329.
    PMID: 33360937 DOI: 10.1016/j.chemosphere.2020.129329
    This study develops a method to reuse aquaculture wastewater and sediment from a catfish pond in order to increase agricultural productivity and protect the environment. Material flow analysis (MFA) is a central concept of this study that involves collecting catfish pond wastewater (CPW) and reusing it to irrigate five water spinach (Ipomoea aquatic) ponds before discharging it into a river. Typically, catfish pond sediment (CPS) was collected and composted to produce organic fertilizer for cornfields. The results revealed that pollutant removal efficiency of wastewater from CPW (by using water spinach) were total organic carbon (TOC) = 38.78%, nitrogen (N) = 27.07%, phosphorous (P) = 58.42%, and potassium (K) = 28.64%. By adding 20 tons of CPS compost per hectare of the cornfield, the corn yield boosted 15% compared to the control field. In addition, the water spinach grew and developed well in the medium of wastewater from the fish pond. Altogether, the results illustrate that catfish pond wastewater and sediment can act as organic fertilizers for crops meanwhile reduce environmental pollution from its reuse.
    Matched MeSH terms: Waste Water
  2. Nhi-Cong LT, Lien DT, Mai CTN, Linh NV, Lich NQ, Ha HP, et al.
    Chemosphere, 2021 Sep;278:130464.
    PMID: 33845437 DOI: 10.1016/j.chemosphere.2021.130464
    Oil pollution which results from industrial activities, especially oil and gas industry, has become a serious issue. Cinder beats (CB), coconut fiber (CF) and polyurethane foam (PUF) are promising immobilization carriers for crude oil biodegradation because they are inexpensive, nontoxic, and non-polluting. The present investigation was aimed to evaluate this advanced technology and compare the efficiency of these immobilization carriers on supporting purple phototrophic bacterial (PPB) strains in hydrocarbon biodegradation of crude oil contaminated seawater. The surface of these biocarriers was supplemented with crude oil polluted seawater and immobilized by PPB strains, Rhodopseudomonas sp. DD4, DQ41 and FO2. Through scanning electron microscopy (SEM), the bacterial cells were shown to colonize and attach strongly to these biocarriers. The bacteria-driven carrier systems degraded over 84.2% supplemented single polycyclic aromatic hydrocarbons (PAHs). The aliphatic and aromatic components in crude oil that treated with carrier-immobilized consortia were degraded remarkably after 14 day-incubation. Among the three biocarriers, removal of the crude oil by CF-bacteria system was the highest (nearly 100%), followed by PUF-bacteria (89.5%) and CB-bacteria (86.3%) with the initial crude oil concentration was 20 g/L. Efficiency of crude oil removal by CB-bacteria and PUF-bacteria were 86.3 and 89.5%, respectively. Till now, the studies on crude oil degradation by mixture species biofilms formed by PPB on different carriers are limited. The present study showed that the biocarriers of an oil-degrading consortium could be made up of waste materials that are cheap and eco-friendly as well as augment the biodegradation of oil-contaminated seawater.
    Matched MeSH terms: Waste Water
  3. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
    Matched MeSH terms: Waste Water
  4. Xiao G, Chen J, Show PL, Yang Q, Ke J, Zhao Q, et al.
    Chemosphere, 2021 Nov;282:130966.
    PMID: 34082314 DOI: 10.1016/j.chemosphere.2021.130966
    Biological methods are promising treatment methods to remove pollutants from wastewater. Recently, microalgae have been proved to be of strong application potential in wastewater treatment. In this study, a microalga - antibiotic treatment system was built to evaluate the treatment capacity of microalgae in antibiotic wastewater. In the group with Chlorella pyrenoidosa, the removal rate of cefradine was 41.47 ± 0.62% after 24 h of treatment, which was 3.4 times higher than that without microalgae (12.37 ± 2.30%). Algal decomposition was the main removal mechanism. Meanwhile, the effect of multiple microalgae species on antibiotic treatment was studied. The removal rates of cefradine by C. pyrenoidosa cultivated in the filtered fluid of Microcystis aeruginosa were 75.48 ± 0.29%, which was significantly higher than those by C. pyrenoidosa only. Those indicated that multiple microalgae species strategy was a potential enhancement strategy for algae-based antibiotic treatment. Finally, amoxicillin and norfloxacin were used to study the treatment potential of this technology for more different kinds antibiotics and the integration of microalgae with activated sludge was also investigated. Amoxicillin can be quickly removed by microalgae, but the removal effect of norfloxacin by microalgae is poor. The refractory antibiotic norfloxacin can be treated by co-culturing microalgae and activated sludge. Those showed the good expansibility of microalgae-based technology. The findings indicated that with microalgae-based antibiotic removal method has good application potential, and combined with other technologies, it can effectively remove the refractory antibiotics.
    Matched MeSH terms: Waste Water
  5. Pramanik BK, Pramanik SK, Monira S
    Chemosphere, 2021 Nov;282:131053.
    PMID: 34098311 DOI: 10.1016/j.chemosphere.2021.131053
    Nano/microplastics (NPs/MPs), a tiny particle of plastic pollution, are known as one of the most important environmental threats to marine ecosystems. Wastewater treatment plants can act as entrance routes for NPs/MPs to the aquatic environment as they breakdown of larger fragments of the plastic component during the treatment process; therefore, it is necessary to remove NPs/MPs during the wastewater treatment process. In this study, understanding the effect of water shear force on the fragmentation of larger size MPs into smaller MPs and NPs and their removal by air flotation and nano-ferrofluid (i.e., magnetite and cobalt ferrite particle as a coagulant) and membrane processes were investigated as a proof-of-concept study. It is found that a two-blade mechanical impeller could fragment MPs from 75, 150 and 300 μm into mean size NPs/MPs of 0.74, 1.14 and 1.88 μm, respectively. Results showed that the maximum removal efficiency of polyethylene, polyvinyl chloride and polyester was 85, 82 and 69%, respectively, in the air flotation process. Increasing the dose of behentrimonium chloride surfactant from 2 to 10 mg/L improved the efficiency of the air flotation process for NPs/MPs removal. It is also found that the removal efficiency of NPs/MPs by the air flotation system depends on solution pH, size, and types of NPs/MPs. This study also found a less significant removal efficiency of NPs/MPs by both types of ferrofluid used in this study with an average removal of 43% for magnetite and 55% for cobalt ferrite. All three plastics tested had similar removal efficiency by the nano-ferrofluid particles, meaning that this removal technique does not rely on the plastic component type. Among all the process tested, both ultrafiltration and microfiltration membrane processes were highly effective, removing more than 90% of NPs/MPs fragment particles. Overall, this study has confirmed the effectiveness of using air flotation and the membrane process to remove NPs/MPs from wastewater.
    Matched MeSH terms: Waste Water
  6. Sakai N, Sakai M, Mohamad Haron DE, Yoneda M, Ali Mohd M
    Chemosphere, 2016 Dec;165:183-190.
    PMID: 27654221 DOI: 10.1016/j.chemosphere.2016.09.022
    Fourteen beta-agonists were quantitatively analyzed in cattle, chicken and swine liver specimens purchased at 14 wet markets in Selangor State, Malaysia, by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The health risks of ractopamine and clenbuterol residues in the Malaysian population were assessed based on quantitative data and meat consumption statistics in Malaysia. Wastewater samples collected at swine farms (n = 2) and cattle/cow farms (n = 2) in the Kuala Langat district were analyzed for the presence for the 14 compounds. Wastewater in chicken farms was not collected because there was negligible discharge during the breeding period. The environmental impacts caused by beta-agonists discharged from livestock farms were spatially assessed in the Langat River basin using a geographic information system (GIS). As a result, 10 compounds were detected in the liver specimens. Ractopamine, which is a permitted compound for swine in Malaysia, was frequently detected in swine livers; also, 9 other compounds that are prohibited compounds could be illegally abused among livestock farms. The health risks of ractopamine and clenbuterol were assessed to be minimal as their hazard quotients were no more than 7.82 × 10(-4) and 2.71 × 10(-3), respectively. Five beta-agonists were detected in the wastewater samples, and ractopamine in the swine farm resulted in the highest contamination (30.1 μg/L). The environmental impacts of the beta-agonists in the Langat River basin were generally concluded to be minimal, but the ractopamine contamination released from swine farms was localized in coastal areas near the estuary of the Langat River basin because most swine farms were located in that region.
    Matched MeSH terms: Waste Water/analysis*
  7. Lee SL, Ho LN, Ong SA, Wong YS, Voon CH, Khalik WF, et al.
    Chemosphere, 2017 Jan;166:118-125.
    PMID: 27693872 DOI: 10.1016/j.chemosphere.2016.09.082
    Photocatalytic fuel cell (PFC) is a potential wastewater treatment technology that can generate electricity from the conversion of chemical energy of organic pollutants. An immobilized ZnO/Zn fabricated by sonication and heat attachment method was applied as the photoanode and Pt/C plate was used as the cathode of the PFC in this study. Factors that affect the decolorization efficiency and electricity generation of the PFC such as different initial dye concentrations and pH were investigated. Results revealed that the degradation of Reactive Green 19 (RG19) was enhanced in a closed circuit PFC compared with that of a opened circuit PFC. Almost 100% decolorization could be achieved in 8 h when 250 mL of 30 mg L(-1) of RG19 was treated in a PFC without any supporting electrolyte. The highest short circuit current of 0.0427 mA cm(-2) and maximum power density of 0.0102 mW cm(-2) was obtained by PFC using 30 mg L(-1) of RG19. The correlation between dye degradation, conductivity and voltage output were also investigated and discussed.
    Matched MeSH terms: Waste Water/chemistry
  8. Logroño W, Pérez M, Urquizo G, Kadier A, Echeverría M, Recalde C, et al.
    Chemosphere, 2017 Mar 01;176:378-388.
    PMID: 28278426 DOI: 10.1016/j.chemosphere.2017.02.099
    An air exposed single-chamber microbial fuel cell (SCMFC) using microalgal biocathodes was designed. The reactors were tested for the simultaneous biodegradation of real dye textile wastewater (RTW) and the generation of bioelectricity. The results of digital image processing revealed a maximum coverage area on the biocathodes by microalgal cells of 42%. The atmospheric and diffused CO2 could enable good algal growth and its immobilized operation on the cathode electrode. The biocathode-SCMFCs outperformed an open circuit voltage (OCV), which was 18%-43% higher than the control. Furthermore, the maximum volumetric power density achieved was 123.2 ± 27.5 mW m(-3). The system was suitable for the treatment of RTW and the removal/decrease of COD, colour and heavy metals. High removal efficiencies were observed in the SCMFCs for Zn (98%) and COD (92-98%), but the removal efficiencies were considerably lower for Cr (54-80%). We observed that this single chamber MFC simplifies a double chamber system. The bioelectrochemical performance was relatively low, but the treatment capacity of the system seems encouraging in contrast to previous studies. A proof-of-concept experiment demonstrated that the microalgal biocathode could operate in air exposed conditions, seems to be a promising alternative to a Pt cathode and is an efficient and cost-effective approach to improve the performance of single chamber MFCs.
    Matched MeSH terms: Waste Water
  9. Saratale RG, Saratale GD, Pugazhendhi A, Zhen G, Kumar G, Kadier A, et al.
    Chemosphere, 2017 Mar 09;177:176-188.
    PMID: 28288426 DOI: 10.1016/j.chemosphere.2017.02.143
    Microbial electrochemical systems (MESs) are an attracting technology for the disposal of wastewater treatment and simultaneous energy production. In MESs, at the anode microorganisms through the catalytic activity generates electrons that can be converted into electricity or other valuable chemical compounds. Microorganisms those having ability to donate and accept electrons to and from anode and cathode electrodes, respectively are recognized as 'exoelectrogens'. In the MESs, it renders an important function for its performance. In the present mini-review, we have discussed the role of microbiome including pure culture, enriched culture and mixed culture in different BESs application. The effects of operational and biological factors on microbiome development have been discussed. Further discussion about the molecular techniques for the evaluation of microbial community analysis is addressed. In addition different electrochemical techniques for extracellular electron transfer (EET) mechanism of electroactive biofilms have been discussed. This review highlights the importance of microbiome in the development of MESs, effective operational factors for exo-electrogens activities as well their key challenges and future technological aspects are also briefly discussed.
    Matched MeSH terms: Waste Water
  10. Yien Fang T, Praveena SM, Aris AZ, Syed Ismail SN, Rasdi I
    Chemosphere, 2019 Jan;215:153-162.
    PMID: 30316157 DOI: 10.1016/j.chemosphere.2018.10.032
    Steroid estrogens, such as 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) are potent and were categorized as "Watch List" in Directive 2013/39/EU because of their potential risks to aquatic environment. Commercialized enzyme-linked immunosorbent assay (ELISA) kits have been used to quantify steroid estrogens in wastewater samples due to their simplicity, rapid, cost-effectiveness, and validated assays. Hence, this study aims to determine the occurrence and removal of steroid hormones in Malaysian wastewater treatment plants (WWTPs) by ELISA, to identify the association of removal efficiency (E2 and EE2) with respect to WWTPs operating conditions, and to assess the potential risks of steroid estrogens to aquatic environment and human. Results showed E2 concentration ranged from 88.2 ± 7.0 ng/L to 93.9 ± 6.9 ng/L in influent and 35.1 ± 17.3 ng/L to 85.2 ± 7.6 ng/L in effluent, with removal of 6.4%-63.0%. The EE2 concentration ranged from 0.2 ± 0.2 ng/L to 4.9 ± 6.3 ng/L in influent and 0.02 ± 0.03 ng/L to 1.0 ± 0.8 ng/L in effluent, with removal of 28.3-99.3%. There is a correlation between EE2 removal with total suspended solid (TSS) and oxidation reduction potential (ORP), and was statistically significant. Despite the calculated estrogenic activity for E2 and EE2 was relatively high, dilution effects could lower estrogenic response to aquatic environment. Besides, these six selected WWTPs have cumulative RQ values below the allowable limit, except WWTP 1. Relatively high precipitation (129-218 mm) could further dilute estrogens concentration in the receiving river. These outputs can be used as quantitative information for evaluating the occurrence and removal of steroid estrogens in Malaysian WWTPs.
    Matched MeSH terms: Waste Water
  11. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Waste Water/microbiology
  12. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
    Matched MeSH terms: Waste Water/chemistry*
  13. Ganesan S, Vadivelu VM
    Chemosphere, 2019 May;223:668-674.
    PMID: 30802832 DOI: 10.1016/j.chemosphere.2019.02.104
    Hydrazine is an intermediate product of the anaerobic ammonium oxidation (Anammox) process where both ammonium and nitrite in wastewater are converted to nitrogen gas by bacteria. In this study the effect of external hydrazine addition (5, 10, 15, and 20 mg/L) on the start-up period of the Anammox process was studied using sequencing batch reactors (SBRs). The SBR with an addition of 10 mg/L hydrazine took only 7 weeks to stabilize and achieve the maximum removal of ammonium and nitrite, whereas the SBR without the addition of hydrazine took 12 weeks. The amount of Heme C extracted from the biomass indicated that externally added hydrazine accelerated the growth of Anammox bacteria and reduced the release of nitrous oxide gas from the reactors.
    Matched MeSH terms: Waste Water/chemistry
  14. Al-Sahari M, Al-Gheethi A, Radin Mohamed RMS, Noman E, Naushad M, Rizuan MB, et al.
    Chemosphere, 2021 Dec;285:131373.
    PMID: 34265718 DOI: 10.1016/j.chemosphere.2021.131373
    Millions of litters of multifarious wastewater are directly disposed into the environment annually to reduce the processing costs leading to eutrophication and destroying the clean water sources. The bioelectrochemical systems (BESs) have recently received significant attention from researchers due to their ability to convert waste into energy and their high efficiency of wastewater treatment. However, most of the performed researches of the BESs have focused on energy generation, which created a literature gap on the utilization of BESs for wastewater treatment. The review highlights this gap from various aspects, including the BESs trends, fundamentals, applications, and mechanisms. A different review approach has followed in the present work using a bibliometric review (BR) which defined the literature gap of BESs publications in the degradation process section and linked the systematic review (SR) with it to prove and review the finding systematically. The degradation mechanisms of the BESs have been illustrated comprehensively in the current work, and various suggestions have been provided for supporting future studies and cooperation.
    Matched MeSH terms: Waste Water
  15. Khan NA, Bokhari A, Mubashir M, Klemeš JJ, El Morabet R, Khan RA, et al.
    Chemosphere, 2022 Jan;286(Pt 3):131838.
    PMID: 34399260 DOI: 10.1016/j.chemosphere.2021.131838
    In this study, Hospital wastewater was treated using a submerged aerobic fixed film (SAFF) reactor coupled with tubesettler in series. SAFF consisted of a column with an up-flow biofilter. The biological oxygen demand (BOD)5, chemical oxygen demand (COD), nitrate and phosphate were the chosen pollutants for evaluation. The pollutants removal efficiency was determined at varying organic loading rates and hydraulic retention time. The organic loading rate was varied between 0.25 and 1.25 kg COD m-3 d-1. The removal efficiency of SAFF and tubesettler combined was 75 % COD, 67 % BOD and 67 % phosphate, respectively. However, nitrate saw an increase in concentration by 25 %. SAFF contribution in the removal of COD, BOD5 and Phosphate was 48 %, 46 % and 29 %, respectively. While for accumulation of nitrate, it was responsible for 56%, respectively. Tubesettler performed better than SAFF with 52 %, 54 % and 69 % reduction of COD, BOD5 and phosphate, respectively. But in terms of nitrate, tubesettler was responsible for 44 % accumulation. The nutrient reduction decreased with an increase in the organic loading rate. Nitrification was observed in the SAFF and tubesettler, which indicated a well-aerated system. An anaerobic unit is required for completing the denitrification process and removing nitrogen from the effluent. The better performance of tubesettler over SAFF calls for necessitates extended retention time over design criteria. Further studies are beneficial to investigate the impact of pharmaceutical compounds on the efficiency of SAFF.
    Matched MeSH terms: Waste Water*
  16. Ghaedi S, Seifpanahi-Shabani K, Sillanpää M
    Chemosphere, 2022 Apr;292:133412.
    PMID: 34974049 DOI: 10.1016/j.chemosphere.2021.133412
    Currently, heavy metals and dyes are some of the most critical pollutants in the aquatic environment. So, in this paper "waste-to-resource conversion", as a new application of modified mine silicate waste to remove Pb2+ ion and methylene blue (MB) dye, adsorption properties, mechanism of action and recycling were studied. Silicate wastes are located in the alteration zone and the margin of molybdenum ore, these wastes are under the influence of hydrothermal solutions which are impregnated with iron and manganese ions. Hence, acid and base modifications have been commonly used. So, in this study, a highly porous nanostructure of modified silicate waste was used to remove MB and Pb2+ ion, in subsequent to our previous study on the application of the raw material of the same in the removal of malachite green. Acid, base, and acid/base treatments were used to activate and modify the adsorbent. Results show a significantly higher potential of modified adsorbent in the removal of MB and Pb2+ compared to the raw material. According to the isotherm and kinetic studies for MB and Pb2+ the Langmuir and Temkin and pseudo-second-order models were investigated with experimental data. Modified nanomaterial was used for several adsorption and desorption processes, without a significant decrease in the capability of the adsorbent in the removal of MB and Pb2+ pollutants. Leached iron and manganese ions (as production of modification) are deposited in the form of sludge using a simple pH adjustment and precipitation process and can be used to recover iron and manganese metals in the long run. The comparison of monolayer adsorption capacity using for Pb2+ ion and MB dye are as ((untreated SW: 29.41, 1.05); (NaOH treated: 21.74, 100); (Nitric Acid treated: 16.67, 142.86); (Citric Acid treated: 40, 125); (Nitric/Citric Acids treated: 15.63, 111.11) and (Nitric/Citric Acids/NaOH treated: 15.15, 83.33)), respectively. Higher adsorption capacity and re-generable properties of this adsorbent suggest the usage of this natural and abundant mine waste to treat wastewater containing toxic elements and dyes.
    Matched MeSH terms: Waste Water
  17. Mohd Hanafiah Z, Wan Mohtar WHM, Abd Manan TSB, Bachi' NA, Abdullah NA, Abd Hamid HH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132134.
    PMID: 34517236 DOI: 10.1016/j.chemosphere.2021.132134
    The water stream has been reported to contain non-steroidal anti-inflammatory drugs (NSAIDs), released from households and premises through discharge from Sewage Treatment Plant (STP). This research identifies commonly consumed NSAIDs namely ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET) and naproxen (NAP) in the influent wastewater from two urban catchments (i.e. 2 STPs). We expand our focus to assess the efficiency of monomer (C18) and dimer (HLB) types of sorbents in the solid phase extraction method followed by gas chromatography mass spectrometry (GCMS) analysis and optimize model prediction of NSAIDs in the influent wastewater using I-Optimal design. The ecological risk assessment of the NSAIDs was evaluated. The HLB produced reliable analysis for all NSAIDs under study (STP1: 6.7 × 10-3 mg L-1 to 2.21 × 10-1 mg L-1, STP2: 1.40 × 10-4 mg L-1 to 9.72 × 10-2 mg L-1). The C18 however, selective to NAP. Based on the Pearson proximity matrices, the DICHLB can be a good indicator for IBUHLB (0.565), NAPC18 (0.721), NAPHLB (0.566), and KETHLB (0.747). The optimized model prediction for KET and NAP based on DIC are successfully validated. The risk quotients (RQ) values of NSAIDs were classified as high (RQ > 1), medium (RQ, 0.1-1) and low (RQ, 0.01-0.1) risks. The optimized models are beneficial for major NSAIDs (KET and NAP) monitoring in the influent wastewater of urban domestic area. An upgrade on the existing wastewater treatment infrastructure is recommended to counteract current water security situation.
    Matched MeSH terms: Waste Water
  18. Al-Gheethi AA, Azhar QM, Senthil Kumar P, Yusuf AA, Al-Buriahi AK, Radin Mohamed RMS, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132080.
    PMID: 34509011 DOI: 10.1016/j.chemosphere.2021.132080
    Rhodamine B (RhB) is among the toxic dyes due to the carcinogenic, neurotoxic effects and ability to cause several diseases for humans. The adsorption with agricultural waste adsorbent recorded high performance for the RhB removal. The current review aimed to explore the efficiency of different adsorbents which have been used in the few last years for removing RhB dye from wastewater. The data of adsorption of RhB using agricultural wastes were collected from the Scopus database in the period between 2015 and 2021. The use of agricultural wastes and adsorbents as a replacement for the activated has received high attention among researchers. The RhB removal methods by microbial enzymes and biomass occurred between 76 and 90.1%. In comparison, the adsorption with agricultural wastes such as activated carbon white sugar reached 98% within 12 min. The adsorption process has a wide range of pH (3-10) due to the zwitterionic forms of RhB. Gmelina aborea leaf activated carbon is among the agriculture wastes absorbents that exhibited 1000 mg g-1 of the adsorption capacity. It appeared that the agricultural wastes adsorbents have a high potential for removing RhB from the wastewater.
    Matched MeSH terms: Waste Water
  19. Wong LY, Lau SY, Pan S, Lam MK
    Chemosphere, 2022 Jan;287(Pt 2):132129.
    PMID: 34509009 DOI: 10.1016/j.chemosphere.2021.132129
    The suitability and efficacy of three-dimensional (3D) graphene, including its derivatives, have garnered widespread attention towards the development of novel, sustainable materials with ecological amenability. This is especially relevant towards its utilization as adsorbents of wastewater contaminants, such as heavy metals, dyes, and oil, which could be majorly attributed to its noteworthy physicochemical features, particularly elevated chemical and mechanical robustness, advanced permeability, as well as large specific surface area. In this review, we emphasize on the adsorptive elimination of oil particles from contaminated water. Specifically, we assess and collate recent literature on the conceptualization and designing stages of 3D graphene-based adsorbents (3DGBAs) towards oil adsorption, including their applications in either batch or continuous modes. In addition, we analytically evaluate the adsorption mechanism, including sorption sites, physical properties, surface chemistry of 3DGBA and interactions between the adsorbent and adsorbate involving the adsorptive removal of oil, as well as numerous effects of adsorption conditions on the adsorption performance, i.e. pH, temperature, initial concentration of oil contaminants and adsorbent dosage. Furthermore, we focus on the equilibrium isotherms and kinetic studies, in order to comprehend the oil elimination procedures. Lastly, we designate encouraging avenues and recommendations for a perpetual research thrust, and outline the associated future prospects and perspectives.
    Matched MeSH terms: Waste Water
  20. Chia SR, Nomanbhay SBHM, Chew KW, Munawaroh HSH, Shamsuddin AH, Show PL
    Chemosphere, 2022 Jan;287(Pt 1):131944.
    PMID: 34438210 DOI: 10.1016/j.chemosphere.2021.131944
    Depletion of non-renewable feedstock and severe wastewater pollution due to human activities have created negative impact to living organisms. The potential solution is to implement wastewater treatment and bioelectricity production through algae-based microbial fuel cell. The algae biomass produced from microbial fuel cell could be further processed to generate biofuels through their unique compositions. The consumption of nutrients in wastewater through algae cultivation and biomass produced to be utilized for energy supply have showed the potential of algae to solve the issues faced nowadays. This review introduces the background of algae and mitigation of wastewater using algae as well as the bioenergy status in Malaysia. The mechanisms of nutrient assimilation such as nitrogen, phosphorus, carbon, and heavy metals are included, followed by the application of algae in microbial fuel cell's chambers. Lastly, the status of algae for bioenergy production are covered.
    Matched MeSH terms: Waste Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links