Affiliations 

  • 1 Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
  • 2 Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia. Electronic address: adel@uthm.edu.my
  • 3 Micropollutant Research Centre (MPRC), Department of Water and Environmental Engineering, Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia. Electronic address: maya@uthm.edu.my
  • 4 Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
  • 5 Department of Chemistry, College of Science, Bld#5, King Saud University, Riyadh, 11451, Saudi Arabia
  • 6 Department of Applied Microbiology, Faculty of Applied Sciences, Taiz University, Taiz, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000, Panchor, Johor, Malaysia
Chemosphere, 2021 Oct;281:130661.
PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661

Abstract

Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications