Displaying all 15 publications

Abstract:
Sort:
  1. Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA
    Top Curr Chem (Cham), 2019 May 27;377(3):17.
    PMID: 31134390 DOI: 10.1007/s41061-019-0241-8
    In this article, the utilization of fungi for the degradation of xenobiotic organic compounds (XOCs) from different wastewater and aqueous solutions has been reviewed. The myco-remediation (myco-enzymes, myco-degradation, and myco-sorption) process is widely used to remove XOCs, which are not easily biodegradable. The removal of XOCs from textile wastewaters through chemical and physical processes has been addressed by many researchers. Currently, the application of oxidative enzymes [manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase] and myco-adsorption is becoming more common for the removal of XOCs from wastewater. Although the advanced oxidation process (AOPs) is a preferred technology for removing XOCs, its use is restricted due to its relatively high cost, which led to research studies on non-traditional and low-cost technology. The current review aimed to organize the scattered available information on the potential of myco-remediation for XOC removal. Moreover, the utilization of agricultural wastes as a production substrate for oxidative enzymes has been reported by many authors. Agricultural waste materials are highly inducible for oxidative enzyme production by fungi and are cost-effective in comparison to commercial substances. It is evident from the literature survey of 80 recently published papers that myco-enzymes have demonstrated outstanding XOC removal capabilities. Fungal laccase enzyme is the first step to degrade the lignin and then to get the carbon source form the cellulose by cellulose enzyme.
  2. Noman E, Al-Gheethi A, Talip BA, Mohamed R, Kassim AH
    PLoS One, 2019;14(9):e0221522.
    PMID: 31513594 DOI: 10.1371/journal.pone.0221522
    The inactivation of antibiotic resistant Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) seeded in greywater by bimetallic bio-nanoparticles was optimized by using response surface methodology (RSM). The bimetallic nanoparticles (Cu/Zn NPs) were synthesized in secondary metabolite of a novel fungal strain identified as Aspergillus iizukae EAN605 grown in pumpkin medium. Cu/Zn NPs were very effective for inhibiting growth of E. coli and S. aureus. The maximum inactivation was optimized with 0.028 mg mL-1 of Cu/Zn NPs, at pH 6 and after 60 min, at which the reduction of E. coli and S. aureus was 5.6 vs. 5.3 and 5.2 vs. 5.4 log reduction for actual and predicted values, respectively. The inactivation mechanism was described based on the analysis of untreated and treated bacterial cells by Field emission scanning electron microscopy (FESEM), Energy Dispersive X-Ray Spectroscopy (EDS), Atomic Force Microscopy (AFM) revealed a damage in the cell wall structure due to the effect of Cu/Zn NPs. Moreover, the Raman Spectroscopy showed that the Cu/Zn NPs led to degradation of carbohydrates and amino structures on the bacteria cell wall. The Fourier transform infrared spectroscopy (FTIR) analysis confirmed that the destruction take place in the C-C bond of the functional groups available in the bacterial cell wall. The techno economic analysis revealed that the biosynthesis Cu/Zn NPs is economically feasible. These findings demonstrated that Cu/Zn NPs can effectively inhibit pathogenic bacteria in the greywater.
  3. Al-Gheethi A, Noman E, Saphira Radin Mohamed RM, Talip B, Vo DN, Algaifi HA
    J Hazard Mater, 2021 10 05;419:126500.
    PMID: 34214856 DOI: 10.1016/j.jhazmat.2021.126500
    The present study aimed to investigate the removal efficiency of cephalexin (CFX) by a novel Cu-Zn bionanocomposite biosynthesized in the secondary metabolic products of Aspergillus arenarioides EAN603 with pumpkin peels medium (CZ-BNC-APP). The optimization study was performed based on CFX concentrations (1, 10.5 and 20 ppm); CZ-BNC-APP dosage (10, 55 and 100 mg/L); time (10, 55 and 100 min), temperature (20, 32.5 and 45 °C). The artificial neural network (ANN) model was used to understand the CFX behavior for the factors affecting removal process. The CZ-BNC-APP showed an irregular shape with porous structure and size between 20 and 80 nm. The FTIR detected CC, C-O and OH groups. ANN model revealed that CZ-BNC-APP dosage exhibited the vital role in the removal process, while the removal process having a thermodynamic nature. The CFX removal was optimized with 12.41 ppm CFX, 60.60 mg/L of CZ-BNC-APP, after 97.55 min and at 35 °C, the real maximum removal was 95.53% with 100.52 mg g-1 of the maximum adsorption capacity and 99.5% of the coefficient. The adsorption of CFX on CZ-BNC-APP was fitted with pseudo-second-order model and both Langmuir and Freundlich isotherms models. These findings revealed that CZ-BNC-APP exhibited high potential to remove CFX.
  4. Noman E, Al-Gheethi A, Radin Mohamed RMS, Talip B, Al-Sahari M, Al-Shaibani M
    J Hazard Mater, 2021 10 05;419:126418.
    PMID: 34171673 DOI: 10.1016/j.jhazmat.2021.126418
    The current review highlighted the quantitative microbiological risk assessment of Vibrio parahaemolyticus in Prawn farm wastewaters (PFWWs) and the applicability of nanoparticles for eliminating antibiotic-resistant bacteria (ARB). The high availability of the antibiotics in the environment and their transmission into human through the food-chain might cause unknown health effects. The aquaculture environments are considered as a reservoir for the antibiotic resistance genes (ARGs) and contributed effectively in the increasing of ABR. The metagenomic analysis is used to explore ARGs in the non-clinical environment. V. parahaemolyticus is among the pathogenic bacteria which are transmitted through sea food causing human acute gastroenteritis due to available thermostable direct hemolysin (tdh), adhesins, TDH related hemolysin (trh). The inactivation of pathogenic bacteria using nanoparticles act by disturbing the cell membrane, interrupting the transport system, DNA and mitochondria damage, and oxidizing the cellular component by reactive oxygen species (ROS). The chloramphenicol, nitrofurans, and nitroimidazole are among the prohibited drugs in fish and fishery product. The utilization of probiotics is the most effective and safe alternative for antibiotics in Prawn aquaculture. This review will ensure public understanding among the readers on how they can decrease the risk of the antimicrobial resistance distribution in the environment.
  5. Al-Gheethi A, Noman E, Jeremiah David B, Mohamed R, Abdullah AH, Nagapan S, et al.
    J Water Health, 2018 Oct;16(5):667-680.
    PMID: 30285950 DOI: 10.2166/wh.2018.113
    The menace of cholera epidemic occurrence in Yemen was reported in early 2017. Recent reports revealed that an estimated 500,000 people are infected with cholera whereas 2,000 deaths have been reported in Yemen. Cholera is transmitted through contaminated water and food. Yemen is the least developed country among the Middle East countries in terms of wastewater and solid waste management. The population of Yemen is about 24.5 million and generates about 70-100 million m3 of sewage. An estimated 7% of the population has sewerage systems. It has been revealed that 31.2 million m3 of untreated sewage is used for irrigation purposes especially for vegetables and Khat trees. In addition, more than 70% of the population in Yemen has no potable water. They depend on water wells as a water source which are located close to sewage disposal sites. The present review focuses on the current status of water, wastewater as well as solid waste management in Yemen and their roles in the outbreak of cholera. Future prospects for waste management have been proposed.
  6. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p E. coli and S. aureus after degradation using B. subtilis which reflects the higher potential of bacteria to biodegrade PACs in secondary effluents. B. subtilis has the potential for biodegradation of PACs in the secondary effluents.
  7. Noman E, Al-Gheethi AA, Talip BA, Mohamed R, Kassim AH
    J Hazard Mater, 2020 03 15;386:121954.
    PMID: 31884363 DOI: 10.1016/j.jhazmat.2019.121954
    The present study deals with optimizing, producing, characterizing, application and techno- economic analysis of oxidative enzymes [Laccase (Lac), manganese peroxidase (MnP), and lignin peroxidase (LiP)] from Aspergillus iizukae EAN605 in submerged fermentation process using pumpkin peels as a production substrate. The best operating parameters for producing Lac, MnP and LiP (6.15, 2.58 and 127.99 U mg-1 respectively) were recorded with 20 g 100 mL-1 of substrate, 4.6 mL 100 mL-1 of inoculum size at pH 5.5 after 10 days. The crude enzyme exhibited high stability at pH (3-9) and temperatures (20-60 °C). Km (Michaelis-Menten) of Lac, MnP and LiP crude enzyme was 2.25, 1.79 and 0.72 mM respectively. The decolourization of Remazol Brilliant Blue R by the crude enzyme was 84.84 %. The techno-economic analysis was assessed for a production unit with an annual operating time for enzymatic production and application is 7920 h/year and 100 m3 of the capacity. The process would produce 27,000 cm3 of crude enzyme with a price of USD 0.107 per cm3 compared to USD 1 per cm3 of the current commercial enzyme. The findings indicated that pumpkin peels have potential as a production substrate for oxidative enzymes from A. iizukae EAN605 and is economically feasible.
  8. Noman E, Norulaini Nik Ab Rahman N, Al-Gheethi A, Nagao H, Talip BA, Ab Kadir O
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21682-21692.
    PMID: 29785605 DOI: 10.1007/s11356-018-2335-1
    The present study aimed to select the best medium for inactivation of Aspergillus fumigatus, Aspergillus spp. in section Nigri, A. niger, A. terreus var. terreus, A. tubingensis, Penicillium waksmanii, P. simplicissimum, and Aspergillus sp. strain no. 145 spores in clinical wastes by using supercritical carbon dioxide (SC-CO2). There were three types of solutions used including normal saline, seawater, distilled water, and physiological saline with 1% of methanol; each solution was tested at 5, 10, and 20 mL of the water contents. The experiments were conducted at the optimum operating parameters of supercritical carbon dioxide (30 MPa, 75 °C, 90 min). The results showed that the inactivation rate was more effective in distilled water with the presence of 1% methanol (6 log reductions). Meanwhile, the seawater decreases inactivation rate more than normal saline (4.5 vs. 5.1 log reduction). On the other hand, the experiments performed with different volumes of distilled water (5, 10, and 20 mL) indicated that A. niger spores were completely inactivated with 10 mL of distilled water. The inactivation rate of fungal spores decreased from 6 to 4.5 log as the amount of distilled water increased from 10 to 20 mL. The analysis for the spore morphology of A. fumigatus and Aspergillus spp. in section Nigri using scanning electron microscopy (SEM) has revealed the role of temperature and pressure in the SC-CO2 in the destruction of the cell walls of the spores. It can be concluded that the distilled water represent the best medium for inactivation of fungal spores in the clinical solid wastes by SC-CO2.
  9. Ali Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip BA, Hossain MS, Ali Hamood Altowayti W, et al.
    J Hazard Mater, 2021 Sep 05;417:126040.
    PMID: 34000703 DOI: 10.1016/j.jhazmat.2021.126040
    In this article, the removal of cephalexin (CFX) antibiotic from non-clinical environment is reviewed. Adsorption and photocatalytic degradation techniques are widely used to remove CFX from waters and wastewaters, the combination of these methods is becoming more common for CFX removal. The treatment methods of CFX has not been reviewed before, the present article aim is to organize the scattered available information regarding sustainable approaches for CFX removal from non-clinical environment. These include adsorption by nanoparticles, bacterial biomass, biodegradation by bacterial enzymes and the photocatalysis using different catalysts and Photo-Fenton photocatalysis. The metal-organic frameworks (MOFs) appeared to have high potential for CFX degradation. It is evident from the recently papers reviewed that the effective methods could be used in place of commercial activated carbon. The widespread uses of photocatalytic degradation for CFX remediation are strongly recommended due to their engineering applicability, technical feasibility, and high effectiveness. The adsorption capacity of the CFX is ranging from 7 mg CFX g-1 of activated carbon nanoparticles to 1667 mg CFX g-1 of Nano-zero-valent iron from Nettle. In contrast, the photo-degradation was 45% using Photo-Fenton while has increased to 100% using heterogeneous photoelectro-Fenton (HPEF) with UVA light using chalcopyrite catalyst.
  10. Al-Shaibani MM, Radin Mohamed RMS, Sidik NM, Enshasy HAE, Al-Gheethi A, Noman E, et al.
    Molecules, 2021 Jul 26;26(15).
    PMID: 34361657 DOI: 10.3390/molecules26154504
    The current review aims to summarise the biodiversity and biosynthesis of novel secondary metabolites compounds, of the phylum Actinobacteria and the diverse range of secondary metabolites produced that vary depending on its ecological environments they inhabit. Actinobacteria creates a wide range of bioactive substances that can be of great value to public health and the pharmaceutical industry. The literature analysis process for this review was conducted using the VOSviewer software tool to visualise the bibliometric networks of the most relevant databases from the Scopus database in the period between 2010 and 22 March 2021. Screening and exploring the available literature relating to the extreme environments and ecosystems that Actinobacteria inhabit aims to identify new strains of this major microorganism class, producing unique novel bioactive compounds. The knowledge gained from these studies is intended to encourage scientists in the natural product discovery field to identify and characterise novel strains containing various bioactive gene clusters with potential clinical applications. It is evident that Actinobacteria adapted to survive in extreme environments represent an important source of a wide range of bioactive compounds. Actinobacteria have a large number of secondary metabolite biosynthetic gene clusters. They can synthesise thousands of subordinate metabolites with different biological actions such as anti-bacterial, anti-parasitic, anti-fungal, anti-virus, anti-cancer and growth-promoting compounds. These are highly significant economically due to their potential applications in the food, nutrition and health industries and thus support our communities' well-being.
  11. Al-Sahari M, Al-Gheethi A, Radin Mohamed RMS, Noman E, Naushad M, Rizuan MB, et al.
    Chemosphere, 2021 Dec;285:131373.
    PMID: 34265718 DOI: 10.1016/j.chemosphere.2021.131373
    Millions of litters of multifarious wastewater are directly disposed into the environment annually to reduce the processing costs leading to eutrophication and destroying the clean water sources. The bioelectrochemical systems (BESs) have recently received significant attention from researchers due to their ability to convert waste into energy and their high efficiency of wastewater treatment. However, most of the performed researches of the BESs have focused on energy generation, which created a literature gap on the utilization of BESs for wastewater treatment. The review highlights this gap from various aspects, including the BESs trends, fundamentals, applications, and mechanisms. A different review approach has followed in the present work using a bibliometric review (BR) which defined the literature gap of BESs publications in the degradation process section and linked the systematic review (SR) with it to prove and review the finding systematically. The degradation mechanisms of the BESs have been illustrated comprehensively in the current work, and various suggestions have been provided for supporting future studies and cooperation.
  12. Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip B, Othman N, Hossain S, et al.
    Environ Res, 2022 03;204(Pt A):111926.
    PMID: 34461120 DOI: 10.1016/j.envres.2021.111926
    The present study aimed to assess the efficiency of silver bio-nanoparticles (Ag-NPs) in inactivating of the Aspergillus fumigatus, A. parasiticus and A. flavus var. columnaris and A. aculeatus spores. The AgNPs were synthesized in secondary metabolic products of Penicillium pedernalens 604 EAN. The inactivation process was optimized by response surface methodology (RSM) as a function of Ag NPs volume (1-10 μL/mL); time (10-120 min); pH (5-8); initial fungal concentrations (log10) (3-6). The artificial neural network (ANN) model was used to understand the behavior of spores for the factors affecting inactivation process. The best conditions to achieved SAL 10-6 of the fungal spores were recorded with 3.46 μl/mL of AgNPs, after 120 min at pH 5 and with 6 log of initial fungal spore concentrations, at which 5.99 vs. 6.09 (SAL 10-6) log reduction was recorded in actual and predicted results respectively with coefficient of 87.00%. The ANN revealed that the timehas major contribution in the inactivation process compare to Ag NPs volume. The fungal spores were totally inactivated (SAL 10-6, 6 log reduction with 99.9999%) after 110 min of the inactivation process, 10 min more was required to insure the irreversible inactivation of the fungal spores. The absence of protease and cellulase enzymes production confirm the total inactivation of the fungal spores. FESEM analysis revealed that the AgNPs which penetrated the fungal spores leading to damage and deform the fungal spore morphology. The AFM analysis confirmed the total spore surface damage. The bands in the range of the Raman spectroscopy from 1300 to 1600 cm-1 in the inactivated spores indicate the presence of CH3, CH2 and the deformation of lipids released outside the spore cytoplasm. These finding indicate that the AgNPs has high potential as a green alternative inactivation process for the airborne fungal spores.
  13. Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Al-Sahari M, Hossain MS, Vo DN, et al.
    Chemosphere, 2022 Mar;291(Pt 1):132862.
    PMID: 34774612 DOI: 10.1016/j.chemosphere.2021.132862
    In this article, the nickel (Ni2+) ions removal from the wastewater is reviewed. Adsorption is widely used to remove Ni2+ ions from waters and wastewaters. The usage of biomass is becoming more common for Ni2+ ions removal, while the commercial activated carbon from different agriculture wastes is preferred as an adsorbent for Ni2+ ion removal. The present review aimed to organise the available information regarding sustainable approaches for Ni2+ ions removal from water and wastewaters. These include adsorption by nanoparticles, bacterial biomass, and activated carbon from agriculture wastes, since they are the most common used for the Ni2+ ions removal. The bacterial and agricultural waste adsorbents exhibited high efficiency with a renewable source of biomass for Ni2+ ion removal. The biosorption capacity of the Ni2+ ions by the bacterial biomass range from 5.7 to 556 mg/g, while ranging from 5.8 to 150 mg/g by the activated carbon from different organic materials. The biosorption capacity of the nanocomposite adsorbents might reach to 400 mg/g. It appeared that the elimination of nickel ions need a selective biomass adsorbent such as the tolerant bacterial cells biomass which acts as a store for Ni2+ ion accumulations as a results for the active and passive transportation of the Ni2+ ions through the bacterial cell membrane.
  14. Noman E, Al-Shaibani MM, Bakhrebah MA, Almoheer R, Al-Sahari M, Al-Gheethi A, et al.
    J Fungi (Basel), 2021 May 30;7(6).
    PMID: 34070936 DOI: 10.3390/jof7060436
    The promising feature of the fungi from the marine environment as a source for anticancer agents belongs to the fungal ability to produce several compounds and enzymes which contribute effectively against the cancer cells growth. L-asparaginase acts by degrading the asparagine which is the main substance of cancer cells. Moreover, the compounds produced during the secondary metabolic process acts by changing the cell morphology and DNA fragmentation leading to apoptosis of the cancer cells. The current review has analyed the available information on the anticancer activity of the fungi based on the data extracted from the Scopus database. The systematic and bibliometric analysis revealed many of the properties available for the fungi to be the best candidate as a source of anticancer drugs. Doxorubicin, actinomycin, and flavonoids are among the primary chemical drug used for cancer treatment. In comparison, the most anticancer compounds producing fungi are Aspergillusniger, A.fumigatusA.oryzae, A.flavus, A. versicolor, A.terreus,Penicilliumcitrinum, P.chrysogenum, and P.polonicum and have been used for investigating the anticancer activity against the uterine cervix, pancreatic cancer, ovary, breast, colon, and colorectal cancer.
  15. Yashni G, Al-Gheethi A, Radin Mohamed RMS, Dai-Viet NV, Al-Kahtani AA, Al-Sahari M, et al.
    Chemosphere, 2021 Oct;281:130661.
    PMID: 34029959 DOI: 10.1016/j.chemosphere.2021.130661
    Textile industry is one of the most environmental unfriendly industrial processes due to the massive generation of colored wastewater contaminated with dyes and other chemical auxiliaries. These contaminants are known to have undesirable consequences to ecosystem. The present study investigated the best operating parameters for the removal of congo red (CR, as the model for dye wastewater) by orange peels extract biosynthesized zinc oxide nanoparticles (ZnO NPs) via photocatalysis in an aqueous solution. The response surface methodology (RSM) with ZnO NPs loadings (0.05-0.20 g), pH (3.00-11.00), and initial CR concentration (5-20 ppm) were used for the optimization process. The applicability of ZnO NPs in the dye wastewater treatment was evaluated based on the techno-economic analysis (TEA). ZnO NPs exhibited hexagonal wurtzite structure with = C-H, C-O, -C-O-C, CC, O-H as the main functional groups. The maximum degradation of CR was more than 96% with 0.171 g of ZnO NPs, at pH 6.43 and 5 ppm of CR and 90% of the R2 coefficient. The specific cost of ZnO NPs production is USD 20.25 per kg. These findings indicated that the biosynthesized ZnO NPs with orange peels extract provides alternative method for treating dye wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links