Affiliations 

  • 1 Department of Applied Microbiology, Faculty of Applied Science, Taiz University, Yemen; Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, KM 1, Jalan Panchor, 84000, Panchor, Johor, Malaysia
  • 2 Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia. Electronic address: adelalghithi@gmail.com
  • 3 Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia. Electronic address: maya@uthm.edu.my
  • 4 Micropollutant Research Centre (MPRC), Faculty of Civil Engineering & Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Parit Raja, Batu Pahat, Johor, Malaysia
  • 5 School of Industrial Technology, Universiti Sains Malaysia (USM), 11800, Penang, Malaysia
  • 6 Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
  • 7 Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Yonsei Frontier Lab, Yonsei University, Seoul, Republic of Korea
Chemosphere, 2022 Mar;291(Pt 1):132862.
PMID: 34774612 DOI: 10.1016/j.chemosphere.2021.132862

Abstract

In this article, the nickel (Ni2+) ions removal from the wastewater is reviewed. Adsorption is widely used to remove Ni2+ ions from waters and wastewaters. The usage of biomass is becoming more common for Ni2+ ions removal, while the commercial activated carbon from different agriculture wastes is preferred as an adsorbent for Ni2+ ion removal. The present review aimed to organise the available information regarding sustainable approaches for Ni2+ ions removal from water and wastewaters. These include adsorption by nanoparticles, bacterial biomass, and activated carbon from agriculture wastes, since they are the most common used for the Ni2+ ions removal. The bacterial and agricultural waste adsorbents exhibited high efficiency with a renewable source of biomass for Ni2+ ion removal. The biosorption capacity of the Ni2+ ions by the bacterial biomass range from 5.7 to 556 mg/g, while ranging from 5.8 to 150 mg/g by the activated carbon from different organic materials. The biosorption capacity of the nanocomposite adsorbents might reach to 400 mg/g. It appeared that the elimination of nickel ions need a selective biomass adsorbent such as the tolerant bacterial cells biomass which acts as a store for Ni2+ ion accumulations as a results for the active and passive transportation of the Ni2+ ions through the bacterial cell membrane.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications