Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Hossain MS, Urbi Z, Sule A, Hafizur Rahman KM
    ScientificWorldJournal, 2014;2014:274905.
    PMID: 25950015 DOI: 10.1155/2014/274905
    As aboriginal sources of medications, medicinal plants are used from the ancient times. Andrographis paniculata is one of the highly used potential medicinal plants in the world. This plant is traditionally used for the treatment of common cold, diarrhoea, fever due to several infective cause, jaundice, as a health tonic for the liver and cardiovascular health, and as an antioxidant. It is also used to improve sexual dysfunctions and serve as a contraceptive. All parts of this plant are used to extract the active phytochemicals, but the compositions of phytoconstituents widely differ from one part to another and with place, season, and time of harvest. Our extensive data mining of the phytoconstituents revealed more than 55 ent-labdane diterpenoids, 30 flavonoids, 8 quinic acids, 4 xanthones, and 5 rare noriridoids. In this review, we selected only those compounds that pharmacology has already reported. Finally we focused on around 46 compounds for further discussion. We also discussed ethnobotany of this plant briefly. Recommendations addressing extraction process, tissue culture, and adventitious rooting techniques and propagation under abiotic stress conditions for improvement of phytoconstituents are discussed concisely in this paper. Further study areas on pharmacology are also proposed where needed.
  2. Hossain MS, Santhanam A, Nik Norulaini NA, Omar AK
    Waste Manag, 2011 Apr;31(4):754-66.
    PMID: 21186116 DOI: 10.1016/j.wasman.2010.11.008
    The management of clinical solid waste (CSW) continues to be a major challenge, particularly, in most healthcare facilities of the developing world. Poor conduct and inappropriate disposal methods exercised during handling and disposal of CSW is increasing significant health hazards and environmental pollution due to the infectious nature of the waste. This article summarises a literature review into existing CSW management practices in the healthcare centers. The information gathered in this paper has been derived from the desk study of open literature survey. Numerous researches have been conducted on the management of CSW. Although, significant steps have been taken on matters related to safe handling and disposal of the clinical waste, but improper management practice is evident from the point of initial collection to the final disposal. In most cases, the main reasons of the mismanagement of CSW are the lack of appropriate legislation, lack of specialized clinical staffs, lack of awareness and effective control. Furthermore, most of the healthcare centers of the developing world have faced financial difficulties and therefore looking for cost effective disposal methods of clinical waste. This paper emphasizes to continue the recycle-reuse program of CSW materials after sterilization by using supercritical fluid carbon dioxide (SF-CO2) sterilization technology at the point of initial collection. Emphasis is on the priority to inactivate the infectious micro-organisms in CSW. In that case, waste would not pose any threat to healthcare workers. The recycling-reuse program would be carried out successfully with the non-specialized clinical staffs. Therefore, the adoption of SF-CO2 sterilization technology in management of clinical solid waste can reduce exposure to infectious waste, decrease labor, lower costs, and yield better compliance with regulatory. Thus healthcare facilities can both save money and provide a safe environment for patients, healthcare staffs and clinical staffs.
  3. Hossain MS, Roney M, Bin Mohd Yunus MY, Shariffuddin JH
    J Biomol Struct Dyn, 2023 Nov 02.
    PMID: 37916669 DOI: 10.1080/07391102.2023.2276889
    Diabetes affects millions globally and poses treatment challenges. Targeting the enzyme fructose-1,6-bisphosphatase (FBPase) in gluconeogenesis and exploring plant-based therapies offer potential solutions for improving diabetes management while supporting sustainability and medicinal advancements. Utilizing pineapple (Ananas comosus L. Merr.) waste as a source of drug precursors could be valuable for health and environmental care due to its medicinal benefits and abundant yearly biomass production. Therefore, this study conducted a virtual screening to identify potential natural compounds from pineapple that could inhibit FBPase activity. A total of 112 compounds were screened for drug-likeness and ADMET properties, and molecular docking simulations were performed on 20 selected compounds using blind docking. The lead compound, butane-2,3-diyl diacetate, was subjected to 100 ns MD simulations, revealing a binding energy of -5.4 kcal/mol comparable to metformin (-5.6 kcal/mol). The MD simulation also confirmed stable complexes with crucial hydrogen bonds. Glu20, Ala24, Thr27, Gly28, Glu29, Leu30, Val160, Met177, Asp178, and Cys179 were identified as key amino acids that stabilized the human liver FBPase-butane-2,3-diyl diacetate complex, while Tyr215 and Asp218 played a crucial role in the human liver FBPase-Metformin complex. Our study indicates that the lead compound has high intestinal solubility. Therefore, it would show rapid bloodstream distribution and effective action on the target protein, making butane-2,3-diyl diacetate a potential antidiabetic drug candidate. However, further investigations in vitro, preclinical, and clinical trials are required to thoroughly assess its efficacy and safety.Communicated by Ramaswamy H. Sarma.
  4. Adewale Ahmed I, Hossain MS, Pei Cee L, Hisam Zamakshsharia N
    Chem Biodivers, 2023 Dec;20(12):e202300952.
    PMID: 37994297 DOI: 10.1002/cbdv.202300952
    The genus Melicope, which consists of 230 species, stands out as the largest genus within the Rutaceae family. Melicope species are characterized by their evergreen nature and can range from shrubs to predominantly dioecious trees. The Melicope species have been utilized in traditional medicine to address a wide range of ailments, including fever, colds, cramps, and inflammation. These plants have gained significant attention due to their noteworthy ethnopharmacological and ethnomedicinal significance. Researchers have isolated numerous biologically active secondary metabolites from different Melicope species, which include polymethoxylated flavonoids, furanocoumarins, acetophenones, benzenoids, and quinolone alkaloids. These compounds exhibit diverse biological activities, such as antibacterial, antidiabetic, antifungal, and antiproliferative properties against human cancer cell lines. This review provides an update on the chemical constituents of the selected species of Melicope. The study also highlights the anticancer and cytotoxicity properties of the plant extracts and phytochemical constituents from Melicope species. Furthermore, the molecular mechanisms underlying the anticancer effects are elucidated. Overall, this review contributes to understanding the significant pharmacological potential of Melicope species and unlocking their chemical composition, emphasizing their relevance in the development of therapeutic agents, particularly in the field of cancer research.
  5. Hossain MS, Nik Ab Rahman NN, Balakrishnan V, Alkarkhi AF, Ahmad Rajion Z, Ab Kadir MO
    Waste Manag, 2015 Apr;38:462-73.
    PMID: 25636860 DOI: 10.1016/j.wasman.2015.01.003
    Clinical solid waste (CSW) poses a challenge to health care facilities because of the presence of pathogenic microorganisms, leading to concerns in the effective sterilization of the CSW for safe handling and elimination of infectious disease transmission. In the present study, supercritical carbon dioxide (SC-CO2) was applied to inactivate gram-positive Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, and gram-negative Escherichia coli in CSW. The effects of SC-CO2 sterilization parameters such as pressure, temperature, and time were investigated and optimized by response surface methodology (RSM). Results showed that the data were adequately fitted into the second-order polynomial model. The linear quadratic terms and interaction between pressure and temperature had significant effects on the inactivation of S. aureus, E. coli, E. faecalis, and B. subtilis in CSW. Optimum conditions for the complete inactivation of bacteria within the experimental range of the studied variables were 20 MPa, 60 °C, and 60 min. The SC-CO2-treated bacterial cells, observed under a scanning electron microscope, showed morphological changes, including cell breakage and dislodged cell walls, which could have caused the inactivation. This espouses the inference that SC-CO2 exerts strong inactivating effects on the bacteria present in CSW, and has the potential to be used in CSW management for the safe handling and recycling-reuse of CSW materials.
  6. Uddin MK, Juraimi AS, Hossain MS, Nahar MA, Ali ME, Rahman MM
    ScientificWorldJournal, 2014;2014:951019.
    PMID: 24683365 DOI: 10.1155/2014/951019
    Purslane (Portulaca oleracea L.) is an important plant naturally found as a weed in field crops and lawns. Purslane is widely distributed around the globe and is popular as a potherb in many areas of Europe, Asia, and the Mediterranean region. This plant possesses mucilaginous substances which are of medicinal importance. It is a rich source of potassium (494 mg/100 g) followed by magnesium (68 mg/100 g) and calcium (65 mg/100 g) and possesses the potential to be used as vegetable source of omega-3 fatty acid. It is very good source of alpha-linolenic acid (ALA) and gamma-linolenic acid (LNA, 18 : 3 w3) (4 mg/g fresh weight) of any green leafy vegetable. It contained the highest amount (22.2 mg and 130 mg per 100 g of fresh and dry weight, resp.) of alpha-tocopherol and ascorbic acid (26.6 mg and 506 mg per 100 g of fresh and dry weight, resp.). The oxalate content of purslane leaves was reported as 671-869 mg/100 g fresh weight. The antioxidant content and nutritional value of purslane are important for human consumption. It revealed tremendous nutritional potential and has indicated the potential use of this herb for the future.
  7. Hossain MS, Balakrishnan V, Rahman NN, Sarker MZ, Kadir MO
    Int J Environ Res Public Health, 2012 Mar;9(3):855-67.
    PMID: 22690168 DOI: 10.3390/ijerph9030855
    A steam autoclave was used to sterilize bacteria in clinical solid waste in order to determine an alternative to incineration technology in clinical solid waste management. The influence of contact time (0, 5, 15, 30 and 60 min) and temperature (111 °C, 121 °C and 131 °C) at automated saturated steam pressure was investigated. Results showed that with increasing contact time and temperature, the number of surviving bacteria decreased. The optimum experimental conditions as measured by degree of inactivation of bacteria were 121 °C for 15 minutes (min) for Gram negative bacteria, 121 °C and 131 °C for 60 and 30 min for Gram positive bacteria, respectively. The re-growth of bacteria in sterilized waste was also evaluated in the present study. It was found that bacterial re-growth started two days after the inactivation. The present study recommends that the steam autoclave cannot be considered as an alternative technology to incineration in clinical solid waste management.
  8. Afroz R, Tanvir EM, Karim N, Hossain MS, Alam N, Gan SH, et al.
    Biomed Res Int, 2016;2016:6437641.
    PMID: 27294126 DOI: 10.1155/2016/6437641
    The present study was designed to investigate the cardioprotective effects of Sundarban honey (SH) in rats with isoproterenol- (ISO-) induced myocardial infarction. Adult male Wistar Albino rats were pretreated with Sundarban honey (5 g/kg) daily for a period of 6 weeks. After the treatment period, ISO (85 mg/kg) was subcutaneously injected into the rats at 24 h intervals for 2 days. ISO-induced myocardial damage was indicated by increased serum cardiac specific troponin I levels and cardiac marker enzyme activities including creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, and alanine transaminase. Significant increases in serum total cholesterol, triglycerides, and low-density lipoprotein-cholesterol levels were also observed, along with a reduction in the serum high-density lipoprotein-cholesterol level. In addition to these diagnostic markers, the levels of lipid peroxide products were significantly increased. The activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly decreased in the hearts after ISO-induced myocardial infarction. However, pretreatment of ischemic rats with Sundarban honey brought the biochemical parameters to near normalcy, indicating the protective effect of Sundarban honey against ISO-induced ischemia in rats. Histopathological findings of the heart tissues further confirmed the biochemical findings, indicating that Sundarban honey confers protection against ISO-induced oxidative stress in the myocardium.
  9. Zaidul ISM, Fahim TK, Sahena F, Azad AK, Rashid MA, Hossain MS
    Data Brief, 2020 Oct;32:106111.
    PMID: 32904423 DOI: 10.1016/j.dib.2020.106111
    Data examines the effect of hydroxypropyl methylcellulose (HPMC) HPMC15 cP, and HPMC 5 cP polymer composition on the physicochemical traits of encapsulated oil made using lab scale spray drying (180 °C). The data found showed that the properties of the reconstituted fish oil powder are significantly affected by the polymer's composition and ratio (p < 0.05). In this experiment, powder with the particle sizes below 60 μm was produced and it was observed that HPMC is a good emulsifier for all formulations and the encapsulation efficiency is high with 75.21% for AF1 formulation. It was also observed that the process of fish oil encapsulation employed by HPMC 5 cP produce a more volatile oil powder, while encapsulation with HPMC 15 cP produced a more stable fish oil powder. These finding shows that the utilisation of HPMC as a polymer to encapsulate fish oil can produce a more efficient and stable compound.
  10. Khalid AM, Hossain MS, Ismail N, Khalil NA, Balakrishnan V, Zulkifli M, et al.
    Polymers (Basel), 2020 Dec 30;13(1).
    PMID: 33396583 DOI: 10.3390/polym13010112
    In the present study, magnetic oil palm empty fruits bunch cellulose nanofiber (M-OPEFB-CNF) composite was isolated by sol-gel method using cellulose nanofiber (CNF) obtained from oil palm empty fruits bunch (OPEFB) and Fe3O4 as magnetite. Several analytical methods were utilized to characterize the mechanical, chemical, thermal, and morphological properties of the isolated CNF and M-OPEFB-CNF. Subsequently, the isolated M-OPEFB-CNF composite was utilized for the adsorption of Cr(VI) and Cu(II) from aqueous solution with varying parameters, such as pH, adsorbent doses, treatment time, and temperature. Results showed that the M-OPEFB-CNF as an effective bio-sorbent for the removal of Cu(II) and Cr(VI) from aqueous solution. The adsorption isotherm modeling revealed that the Freundlich equation better describes the adsorption of Cu(II) and Cr(VI) on M-OPEFB-CNF composite. The kinetics studies revealed the pseudo-second-order kinetics model was a better-described kinetics model for the removal of Cu(II) and Cr(VI) using M-OPEFB-CNF composite as bio-sorbent. The findings of the present study showed that the M-OPEFB-CNF composite has the potential to be utilized as a bio-sorbent for heavy metals removal.
  11. Islam KT, Raj RG, Shamsul Islam SM, Wijewickrema S, Hossain MS, Razmovski T, et al.
    Sensors (Basel), 2020 Jun 24;20(12).
    PMID: 32599883 DOI: 10.3390/s20123578
    Automatic vehicle license plate recognition is an essential part of intelligent vehicle access control and monitoring systems. With the increasing number of vehicles, it is important that an effective real-time system for automated license plate recognition is developed. Computer vision techniques are typically used for this task. However, it remains a challenging problem, as both high accuracy and low processing time are required in such a system. Here, we propose a method for license plate recognition that seeks to find a balance between these two requirements. The proposed method consists of two stages: detection and recognition. In the detection stage, the image is processed so that a region of interest is identified. In the recognition stage, features are extracted from the region of interest using the histogram of oriented gradients method. These features are then used to train an artificial neural network to identify characters in the license plate. Experimental results show that the proposed method achieves a high level of accuracy as well as low processing time when compared to existing methods, indicating that it is suitable for real-time applications.
  12. Yunus MNH, Jaafar MH, Mohamed ASA, Azraai NZ, Hossain MS
    PMID: 34444087 DOI: 10.3390/ijerph18168342
    Work-related musculoskeletal disorders (WMSDs) are among the most common disorders in any work sector and industry. Ergonomic risk assessment can reduce the risk of WMSDs. Motion capture that can provide accurate and real-time quantitative data has been widely used as a tool for ergonomic risk assessment. However, most ergonomic risk assessments that use motion capture still depend on the traditional ergonomic risk assessment method, focusing on qualitative data. Therefore, this article aims to provide a view on the ergonomic risk assessment and apply current motion capture technology to understand classical mechanics of physics that include velocity, acceleration, force, and momentum in ergonomic risk assessment. This review suggests that using motion capture technologies with kinetic and kinematic variables, such as velocity, acceleration, and force, can help avoid inconsistency and develop more reliable results in ergonomic risk assessment. Most studies related to the physical measurement conducted with motion capture prefer to use non-optical motion capture because it is a low-cost system and simple experimental setup. However, the present review reveals that optical motion capture can provide more accurate data.
  13. Owolabi AF, Haafiz MK, Hossain MS, Hussin MH, Fazita MR
    Int J Biol Macromol, 2017 Feb;95:1228-1234.
    PMID: 27836655 DOI: 10.1016/j.ijbiomac.2016.11.016
    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds.
  14. Aalsalem MY, Khan WZ, Saad NM, Hossain MS, Atiquzzaman M, Khan MK
    PLoS One, 2016;11(7):e0158072.
    PMID: 27409082 DOI: 10.1371/journal.pone.0158072
    Wireless Sensor Networks (WSNs) are vulnerable to Node Replication attacks or Clone attacks. Among all the existing clone detection protocols in WSNs, RAWL shows the most promising results by employing Simple Random Walk (SRW). More recently, RAND outperforms RAWL by incorporating Network Division with SRW. Both RAND and RAWL have used SRW for random selection of witness nodes which is problematic because of frequently revisiting the previously passed nodes that leads to longer delays, high expenditures of energy with lower probability that witness nodes intersect. To circumvent this problem, we propose to employ a new kind of constrained random walk, namely Single Stage Memory Random Walk and present a distributed technique called SSRWND (Single Stage Memory Random Walk with Network Division). In SSRWND, single stage memory random walk is combined with network division aiming to decrease the communication and memory costs while keeping the detection probability higher. Through intensive simulations it is verified that SSRWND guarantees higher witness node security with moderate communication and memory overheads. SSRWND is expedient for security oriented application fields of WSNs like military and medical.
  15. Rizal S, Fizree HM, Hossain MS, Ikramullah, Gopakumar DA, Wan Ni EC, et al.
    Heliyon, 2020 Mar;6(3):e03550.
    PMID: 32190763 DOI: 10.1016/j.heliyon.2020.e03550
    This study was conducted to determine the influence of the oil palm boiler ash (OPBA) reinforcement on the microstructural, physical, mechanical and thermal properties of epoxy polymer composites. The chemical composition analysis of OPBA revealed that it contains about 55 wt.% of SiO2 along with other metallic oxides and elements. The surface morphology of OPBA showed angular and irregular shapes with porous structures. The influence of OPBA as a reinforcement in epoxy composite was studied with varying filler loadings (10-50 wt.%) and different particle sizes (50-150 μm). The result showed that the incorporation of OPBA in composites has improved the physical, mechanical and thermal properties of the epoxy matrix. The highest physical and mechanical properties of fabricated composites were attained with 30 wt.% loading and size of 50 μm. Also, thermal stability and the percentage of char residue of the composite increased with increasing filler loading. Furthermore, the contact angle of OPBA reinforced epoxy composites increased with the increase of filler loading. The lowest value of the contact angle was obtained at 30 wt.% of filler loading with the OPBA particle size of 50 μm. The finding of this study reveals that the OPBA has the potential to be used as reinforcement or filler as well as an alternative of silica-based inorganic fillers used in the enhancement of mechanical, physical and thermal properties of the epoxy polymer composite.
  16. Karuniawati H, Sari N, Hossain MS, Ismail WI, Haq AHB, Yulianti T, et al.
    Int J Environ Res Public Health, 2022 Sep 22;19(19).
    PMID: 36231312 DOI: 10.3390/ijerph191912011
    The COVID-19 pandemic globally impacted physical, spiritual, and mental health (MH). The consequences significantly affected students' quality of life (QoL) too. This cross-sectional study assessed MH status and its relationship to the QoL of college students in Indonesia. This study collected data (September 2021-April 2022) online using the depression, anxiety, and stress scale-21 (DASS-21) to measure MH and the world health organization quality-of-life scale (WHOQoL-BREF) to measure the QoL. The data were analysed using SPSS with a bivariate and multivariate linear regression test. A total of 606 respondents participated in this study, with the majority being women (81.0%), aged 21-27 years (44.3%), and unmarried (98.5%) respondents. We observed 24.4% (n = 148) moderate depression, 18.3% (n = 111) very severe anxiety, and 21.1% (n = 128) moderate stress status. The QoL measurement determined that a moderate QoL in the physical and environmental health domains (>70%) and poor QoL in the psychological health domain (58.3%) were found. Gender, age, family support, history of COVID-19 diagnosis, family with COVID-19 diagnosis, vaccination status, and physical symptoms are significantly associated with MH status and QoL (p-value < 0.05). This study demonstrated that COVID-19 was negatively related to college students' MH and QoL. Targeted interventions may be needed to ameliorate both MH and QoL.
  17. Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S
    Environ Sci Pollut Res Int, 2019 Jan;26(1):923-937.
    PMID: 30421367 DOI: 10.1007/s11356-018-3663-x
    Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
  18. Jabeen T, Jabeen I, Ashraf H, Jhanjhi NZ, Yassine A, Hossain MS
    Sensors (Basel), 2023 May 25;23(11).
    PMID: 37299782 DOI: 10.3390/s23115055
    The Internet of Things (IoT) uses wireless networks without infrastructure to install a huge number of wireless sensors that track system, physical, and environmental factors. There are a variety of WSN uses, and some well-known application factors include energy consumption and lifespan duration for routing purposes. The sensors have detecting, processing, and communication capabilities. In this paper, an intelligent healthcare system is proposed which consists of nano sensors that collect real-time health status and transfer it to the doctor's server. Time consumption and various attacks are major concerns, and some existing techniques contain stumbling blocks. Therefore, in this research, a genetic-based encryption method is advocated to protect data transmitted over a wireless channel using sensors to avoid an uncomfortable data transmission environment. An authentication procedure is also proposed for legitimate users to access the data channel. Results show that the proposed algorithm is lightweight and energy efficient, and time consumption is 90% lower with a higher security ratio.
  19. Karuniawati H, Hassali MAA, Suryawati S, Ismail WI, Taufik T, Hossain MS
    Int J Environ Res Public Health, 2021 Aug 04;18(16).
    PMID: 34444015 DOI: 10.3390/ijerph18168258
    Misuse and overuse of antibiotics are potential causes of the increasing prevalence of antibiotic resistance (ABR). Having information about the knowledge, attitude, and practices concerning antibiotics use by the public might help control ABR growth. Therefore, this cross-sectional study aimed to investigate the levels and associated factors of knowledge, attitude, and practice (KAP) of antibiotics use among the public. A questionnaire was designed and validated, which consisted of a total of 51 questions with four sections: demographics (6), knowledge (20), attitude (12), and practice (13) to measure KAP. Univariate analysis (using Mann-Whitney U and Kruskal-Wallis analysis) was applied to assess the differences in the mean scores of KAP. Linear regression analysis was performed to identify factors associated with KAP. Finally, using Spearman analysis we have examined the correlation between responses to the KAP. The sample size of this study was 575, with a 99.96% response rate. Regarding knowledge, 73.12% of respondents stated that antibiotics could be used to treat viral infections, and 63.35% of respondents answered that antibiotics could reduce fever. Concerning attitude, 50% of respondents had considered stopping taking antibiotics as soon as symptoms had disappeared. In analyzing practice, we found 40% of respondents obtained antibiotics from a pharmacy without a prescription from a physician, a nurse, or a midwife. Statistical analysis revealed that KAP about antibiotic use was significantly associated with gender, area of residence, level of education, and monthly income (p < 0.05). Our findings concluded that men, respondents with low income, those with low-level education, and those living in rural areas are more prone to excessive use of antibiotics without knowing the adverse effects of improper use and how it can contribute to high ABR. So it is urgently necessary to strengthen policies on antibiotics use, including drug provision, distribution, and sales. In addition, people with low KAP should be a priority consideration in education outreach initiatives.
  20. Ogiemwonyi O, Alam MN, Hago IE, Azizan NA, Hashim F, Hossain MS
    Heliyon, 2023 Jun;9(6):e16524.
    PMID: 37274640 DOI: 10.1016/j.heliyon.2023.e16524
    Developing nations have motivated contemporary manufacturing companies to embrace green innovation and focus on smart technology that is sustainable to harness the growing economy and uplift the people. Although, scientific research in this direction has been neglected, and at the same time there are challenges to the attainment while meeting the need of the people. This study aims to investigate the impact of Industry 4.0, open innovation and green innovation performance on green innovation behaviour. To this end, a theoretical model was established. A quantitative research approach was applied in which survey data were utilized to capture 247 responses from different manufacturing companies in Malaysia. The model was tested using SmartPLSver3.0 to measure the structural relationship between variables. The findings indicate that Industry 4.0 and green innovation performance positively impact green innovation behaviour, compared to open innovation which has no impact. The impact of green innovation performance is found to be stronger when compared to Industry 4.0 and open innovation. Likewise, green innovation performance exhibits a substantial mediating impact between the exogenous variables and green innovation behaviour. The policy implication and conclusions are further discussed in the last section of the study.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links