Displaying publications 1 - 20 of 88 in total

Abstract:
Sort:
  1. M R NF, Jayaraman K, Bhattacharyya D
    Materials (Basel), 2016 Jul 02;9(7).
    PMID: 28773662 DOI: 10.3390/ma9070539
    Poly (lactic) acid (PLA) composites have made their way into various applications that may require thermoforming to produce 3D shapes. Wrinkles are common in many forming processes and identification of the forming parameters to prevent them in the useful part of the mechanical component is a key consideration. Better prediction of such defects helps to significantly reduce the time required for a tooling design process. The purpose of the experiment discussed here is to investigate the effects of different test parameters on the occurrence of deformations during sheet forming of double curvature shapes with bamboo fabric reinforced-PLA composites. The results demonstrated that the domes formed using hot tooling conditions were better in quality than those formed using cold tooling conditions. Wrinkles were more profound in the warp direction of the composite domes compared to the weft direction. Grid Strain Analysis (GSA) identifies the regions of severe deformation and provides useful information regarding the optimisation of processing parameters.
    Matched MeSH terms: Textiles
  2. Engku Liyana Zafirah Engku Mohd Suhaimi, Jamil Salleh, Suzaini Abd Ghani, Mohamad Faizul Yahya, Mohd Rozi Ahmad
    MyJurnal
    An investigation on the properties of Tenun Pahang fabric performances using alternative yarns was conducted. The studies were made in order to evaluate whether the Tenun Pahang fabric could be produced economically and at the same time maintain the fabric quality. Traditional Tenun Pahang fabric uses silk for both warp and weft. For this project, two alternative yarns were used which were bamboo and modal, which were a little lower in cost compared to silk. These yarns were woven with two variations, one with the yarns as weft only while maintaining the silk warp and the other with both warp and weft using the alternative yarns. Four (4) physical testing and three (3) mechanical testing conducted on the fabric samples. The fabric samples were evaluated including weight, thickness, thread density, crease recovery angle, stiffness and drapability. The results show that modal/silk and bamboo silk fabrics are comparable in terms of stiffness and drapability, hence they have the potential to replace 100% silk Tenun Pahang.
    Matched MeSH terms: Textiles
  3. Elias BBQ, Soh PJ, Al-Hadi AA, Akkaraekthalin P, Vandenbosch GAE
    Sensors (Basel), 2021 Apr 04;21(7).
    PMID: 33916507 DOI: 10.3390/s21072516
    This work presents the design and optimization of an antenna with defected ground structure (DGS) using characteristic mode analysis (CMA) to enhance bandwidth. This DGS is integrated with a rectangular patch with circular meandered rings (RPCMR) in a wearable format fully using textiles for wireless body area network (WBAN) application. For this integration process, both CMA and the method of moments (MoM) were applied using the same electromagnetic simulation software. This work characterizes and estimates the final shape and dimensions of the DGS using the CMA method, aimed at enhancing antenna bandwidth. The optimization of the dimensions and shape of the DGS is simplified, as the influence of the substrates and excitation is first excluded. This optimizes the required time and resources in the design process, in contrast to the conventional optimization approaches made using full wave "trial and error" simulations on a complete antenna structure. To validate the performance of the antenna on the body, the specific absorption rate is studied. Simulated and measured results indicate that the proposed antenna meets the requirements of wideband on-body operation.
    Matched MeSH terms: Textiles
  4. Mohd. Asrul Hery Bin Ibrahim, Mustafa Mamat, Leong Wah June
    Sains Malaysiana, 2014;43:1591-1597.
    In this paper we present a new line search method known as the HBFGS method, which uses the search direction of the conjugate gradient method with the quasi-Newton updates. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is used as approximation of the Hessian for the methods. The new algorithm is compared with the BFGS method in terms of iteration counts and CPU-time. Our numerical analysis provides strong evidence that the proposed HBFGS method is more efficient than the ordinary BFGS method. Besides, we also prove that the new algorithm is globally convergent.
    Matched MeSH terms: Textiles
  5. Buckley CD
    PLoS One, 2012;7(12):e52064.
    PMID: 23272211 DOI: 10.1371/journal.pone.0052064
    The warp ikat method of making decorated textiles is one of the most geographically widespread in southeast Asia, being used by Austronesian peoples in Indonesia, Malaysia and the Philippines, and Daic peoples on the Asian mainland. In this study a dataset consisting of the decorative characters of 36 of these warp ikat weaving traditions is investigated using Bayesian and Neighbornet techniques, and the results are used to construct a phylogenetic tree and taxonomy for warp ikat weaving in southeast Asia. The results and analysis show that these diverse traditions have a common ancestor amongst neolithic cultures the Asian mainland, and parallels exist between the patterns of textile weaving descent and linguistic phylogeny for the Austronesian group. Ancestral state analysis is used to reconstruct some of the features of the ancestral weaving tradition. The widely held theory that weaving motifs originated in the late Bronze Age Dong-Son culture is shown to be inconsistent with the data.
    Matched MeSH terms: Textiles*
  6. Khomsaton Abu Bakar, Selambakkannu, Sarala, Jamaliah Sharif, Khairul Zaman Mohd Dahlan, Ming, Ting Teo, Natasha lsnin, et al.
    MyJurnal
    The combination of irradiation and biological technique was chosen to study COD, BOD5 and colour removal from textiles effluent in the presence of food industry wastewater. Two biological treatments, the first consisting a mix of non irradiated textile and food industry wastewater and the second a mix of irradiated textiles wastewater and food industry wastewater were operated in parallel. Reduction percentage of COD in textiles wastewater increased from 29.4% after radiation to 62.4% after further undergoing biological treatment. After irradiation, the BOD5 of textiles wastewater was reduced by 22.1%, but reverted to the original value of 36mg/1 after undergoing biological treatment. Colour had decreased from 899.5 ADMI to 379.3 ADM1 after irradiation and continued to decrease to 109.3 ADMI after passing through biological treatment.
    Matched MeSH terms: Textiles
  7. Selambakkannu, Sarala, Bakar, Khomsaton Abu, Ming, Ting Teo, Jamaliah Sharif
    MyJurnal
    In this studies gamma and electron beam irradiation was used to treat textile waste water. Comparisons between both types of irradiation in terms of effectiveness to degrade the pollutants present in textile waste water were done. Prior to irradiation, the raw wastewater was diluted using distilled water to a target concentration of COD 400 mg/l. The sample was irradiated at selected doses between the ranges of 10 kGy to 100 kGy. The results showed that irradiation has significantly contributed in the reduction of the highly colored refractory organic pollutants. The COD removal at the lowest dose, 10 kGy was reduced to 390 mg/l for gamma and 400 mg/l for electron beam. Meanwhile, at the highest dose, 100 kGy, the COD was reduced to 125 mg/l for gamma and 144 mg/l for electron beam. The degree of removal is influenced by the dose introduced during the treatment process. As the dose increased, the higher the removal of organic pollutant was recorded. However, gamma irradiation is more effective although the differences are not significant between gamma and electron beam irradiation. On the other hand, other properties of the wastewater such as pH, turbidity, suspended solid, BOD and color also shows a gradual decrease as the dose increases for both types of irradiation.
    Matched MeSH terms: Textiles
  8. Selambakkannu, S., Bakar, K.A., Ting, T.M., Sharif, J., Dahlan, K.Z.
    MyJurnal
    This paper studies the use of gamma irradiation for textile waste water treatment. Prior to irradiation, the raw wastewa ter was diluted using tap water to targeted concentration of COD 400 mg/l. The sample was irradiated at selected dose between the ranges of 2kGy to 100kGy. The results showed that Irradiation was effective in removing the highly colored refractory organic pollutants. The COD removal at lowest dose, 2kGy is about 310 mg/l. Meanwhile, at highest dose, 1 00kGy the COD reduced to 100mg/l. The degree of removal influenced by the dose introduced during the treatment pro cess. As the dose increased, higher removal of organic pollutant was recorded. On the other hand, other properties of t he wastewater such as pH, turbidity, suspended solid, BOD and color shows tremendous changes as the dose increases. This shows the concentration of pollutants and dose of irradiation applied are directly proportional to each other.
    Matched MeSH terms: Textiles
  9. Nurul Syazwani Abdul Latif, Suzaini Abdul Ghani
    MyJurnal
    Weft density and draw in plan play an important role since they affect physical properties such as fabric weight, cloth cover factor as well as seam strength. Weft density refers to the amount of weft yarn in one inch. Meanwhile, draw in plan refers to the amount of heald shaft used and the order of warp yarn through the heald. In this study, plain woven fabrics were produced by using Sulzer Rapier Loom Machine. There were two different types of weft density used which were 15 and 20 weft per centimeter (wpcm) and four draws in plan: pointed, straight, broken and broken mirror. Seams were constructed by using plain seam of Ssa-1, four stitches of stitch density and 301 lockstitches for stitch type. Subsequently, the fabric samples were tested on seam strength by using Testometric tester. As a result of this study, it is proven that weft density and draw in plan of woven plain fabric are parameters that affect the seam strength and seam efficiency. The highest increase in percentage of seam strength was obtained from straight draw in plan which increases up to 17.19% from 15wpcm to 20wpcm. Meanwhile, broken draw in plan has the lowest increase percentage for seam strength which is 6.46%. Furthermore, seam efficiency also shows straight draw in plan gives good fabric durability compared to others. Lastly, it also shows broken draw in plan has no significant effect on fabric tensile strength and seam strength.
    Matched MeSH terms: Textiles
  10. Esfahani H, Jose R, Ramakrishna S
    Materials (Basel), 2017 Oct 27;10(11).
    PMID: 29077074 DOI: 10.3390/ma10111238
    Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.
    Matched MeSH terms: Textiles
  11. Wan Syazehan Ruznan, Suraya Ahmad Suhaimi, Nazzuha Pairan, Aimi Umairah Mazlan, Anis Naziihah Azrain, Intan Shahirah Md Rosli, et al.
    MyJurnal
    Fibres from banana’s stem are abundantly available in Malaysia. This study focused on the production
    of woven fabric from banana pseudo-stem fibres. Yarn made of 100% banana stem and 100% cotton
    yarn were produced. Two types of retting techniques were conducted, which are water retting and
    retting using softening agent. The fibres were spun and weaved into plain weave fabric. All specimens
    were evaluated for yarn twist, yarn evenness, yarn linear density and selected fabric physical
    properties. The results obtained showed that banana stem fabric treated with softening agent has lower
    area density and higher thickness. Weft sample retted in softening agent has higher bending length and
    flexural rigidity than sample retted in water. This might be due to the decrement of yarn’s stiffness,
    which eases the insertion of yarn during shedding process. Weft sample retted in water has lower
    bending length due to coarser yarn and tends to break easily. It is found that retting banana stem fibres
    with softening agent affect the yarn linear density, area density, fabric stiffness properties and flexural
    rigidity of the fabric.
    Matched MeSH terms: Textiles
  12. Noraqilah Mohd Azis, Siti Farhanim Sarani, Eryna Nasir, Najua Tulos
    MyJurnal
    Pilling is one of the fabric faults that originally found in knitted woolen goods especially made from soft twisted yarns. The rubbing action on loose fibres that is present on the fabric surface gives a high tendency to form pills which gives poor appearance to the fabric. This study was carried out to investigate the effect of repeated launderings on the propensity of pilling formation by using pill grade machine. The primary objective of this study was to determine the pilling behaviour of different types of weft knitted fabrics after a repeated number of laundering cycles. The study was conducted using two types of knitted fabrics; cotton and polyester with three types of knitted structures; interlock, 1x1 rib and plain jersey. The various number of laundering cycles were given on the fabrics and followed by 15,000 revolutions of ICI pilling box. The results showed that polyester fibre has better pilling resistance due to its exceptional strength, whilst in terms of fabric structure, plain jersey showed an excellent resistance. This is due to the higher density and compact structure that it possessed.
    Matched MeSH terms: Textiles
  13. Kasavan S, Yusoff S, Guan NC, Zaman NSK, Fakri MFR
    Environ Sci Pollut Res Int, 2021 Sep;28(33):44780-44794.
    PMID: 34235692 DOI: 10.1007/s11356-021-15303-5
    Researchers have broadly studied textile waste, but the research topics development and performance trends in this study area are still unclear. A bibliometric analysis was conducted to explore the global scientific literature to determine state of the art on textile waste over the past 16 years. Data of publications output are identified based on the Web of Science (from 2015 to 2020). This study used VOSviewer to analyse collaboration networks among authors, countries, institutions, and author's keywords in identifying five main clusters. A total of 3296 papers in textile waste research were identified. In this study, a total of 10451 authors were involved in textile waste research, and 36 authors among them published more than ten research publications in the period of this study. China has been in a top position in textile waste research moving from 3 output publications in 2005 to 91 output publications in 2020. Indian Institute of Technology System IIT System was ranked first in terms of the total publication number (85 publications, 2.45%). Textile wastewater and adsorption are the most commonly used keywords that reflect the current main research direction in this field and received more attention in recent years. Based on keyword cluster analysis outputs, textile waste research can be categorized into five types of clusters, namely (1) pollutant compositions, (2) component of textile wastewater, (3) treatment methods for textile wastewater, (4) effect mechanism of textile wastewater, and (5) recyclability of textile waste.
    Matched MeSH terms: Textiles
  14. Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, et al.
    J Mech Behav Biomed Mater, 2020 10;110:103884.
    PMID: 32957191 DOI: 10.1016/j.jmbbm.2020.103884
    Cellulose constitutes most of a plant's cell wall, and it is the most abundant renewable polymer source on our planet. Given the hierarchical structure of cellulose, nanocellulose has gained considerable attention as a nano-reinforcement for polymer matrices in various industries (medical and healthcare, oil and gas, packaging, paper and board, composites, printed and flexible electronics, textiles, filtration, rheology modifiers, 3D printing, aerogels and coating films). Herein, nanocellulose is considered as a sustainable nanomaterial due to its substantial strength, low density, excellent mechanical performance and biocompatibility. Indeed, nanocellulose exists in several forms, including bacterial cellulose, nanocrystalline cellulose and nanofibrillated cellulose, which results in biodegradable and environmentally friendly bionanocomposites with remarkably improved material properties. This paper reviews the recent advances in production, physicochemical properties, and structural characterization of nanocelluloses. It also summarises recent developments in several multifunctional applications of nanocellulose with an emphasis on bionanocomposite properties. Besides, various challenges associated with commercialisation and economic aspects of nanocellulose for current and future markets are also discussed inclusively.
    Matched MeSH terms: Textiles
  15. Ashyap AYI, Elamin NIM, Dahlan SH, Abidin ZZ, See CH, Majid HA, et al.
    PLoS One, 2021;16(1):e0246057.
    PMID: 33508025 DOI: 10.1371/journal.pone.0246057
    A compact fabric antenna structure integrated with electromagnetic bandgap structures (EBGs) covering the desired frequency spectrum between 2.36 GHz and 2.40 GHz for Medical Body-Area Networks (MBANs), is introduced. The needs of flexible system applications, the antenna is preferably low-profile, compact, directive, and robust to the human body's loading effect have to be satisfied. The EBGs are attractive solutions for such requirements and provide efficient performance. In contrast to earlier documented EBG backed antenna designs, the proposed EBG behaved as shielding from the antenna to the human body, reduced the size, and acted as a radiator. The EBGs reduce the frequency detuning due to the human body and decrease the back radiation, improving the antenna efficiency. The proposed antenna system has an overall dimension of 46×46×2.4 mm3. The computed and experimental results achieved a gain of 7.2 dBi, a Front to Back Ratio (FBR) of 12.2 dB, and an efficiency of 74.8%, respectively. The Specific Absorption Rate (SAR) demonstrates a reduction of more than 95% compared to the antenna without EBGs. Moreover, the antenna performance robustness to human body loading and bending is also studied experimentally. Hence, the integrated antenna-EBG is a suitable candidate for many wearable applications, including healthcare devices and related applications.
    Matched MeSH terms: Textiles
  16. Sinnapa S, Soon LS
    Med J Malaya, 1970 Jun;24(4):278-86.
    PMID: 4096943
    Matched MeSH terms: Textiles
  17. Hindatu Y, Annuar MSM, Subramaniam R, Gumel AM
    Bioprocess Biosyst Eng, 2017 Jun;40(6):919-928.
    PMID: 28341913 DOI: 10.1007/s00449-017-1756-4
    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m2, which was 15-53% higher than the MFC operated with CC-C (214 mW/m2) and pristine CC (119 mW/m2) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.
    Matched MeSH terms: Textiles
  18. Umi Nadrah Amran, Nur Nadiah Mohd Rais
    MyJurnal
    In medical imaging practice, the act of removing any clothes from the region of interest is justified as to prevent the presence of artefacts on radiographs. However, by doing so, the ‘aurah’ of the patients, especially for the Muslims, are not observed and can be considered as violating their privacy if they are not well-informed beforehand. Previous studies have proved that radiographs with the presence of some fabric materials on the region of interest are radiographically acceptable. Therefore, the aims of this study are to tackle the issue of exposing one’s ‘aurah’ for a knee x-ray examination to take place and also to add insufficiency from the previous studies.
    Matched MeSH terms: Textiles
  19. Aisyah HA, Paridah MT, Khalina A, Sapuan SM, Wahab MS, Berkalp OB, et al.
    Polymers (Basel), 2018 Nov 28;10(12).
    PMID: 30961245 DOI: 10.3390/polym10121320
    The effects of different fabric materials namely weave designs (plain and satin) and fabric counts (5 × 5 and 6 × 6) on the properties of laminated woven kenaf/carbon fibre reinforced epoxy hybrid composites were evaluated. The hybrid composites were fabricated from two types of fabric, i.e., woven kenaf that was made from a yarn of 500tex and carbon fibre, by using vacuum infusion technique and epoxy resin as matrix. The panels were tested for tensile, flexural, and impact strengths. The results have revealed that plain fabric is more suitable than satin fabric for obtaining high tensile and impact strengths. Using a fabric count of 5 × 5 has generated composites that are significantly higher in flexural modulus as compared to 6 × 6 which may be attributed to their structure and design. The scanned electron micrographs of the fractured surfaces of the composites demonstrated that plain woven fabric composites had better adhesion properties than satin woven fabric composites, as indicated by the presence of notably lower amount of fibre pull out.
    Matched MeSH terms: Textiles
  20. Darain KMU, Jumaat MZ, Shukri AA, Obaydullah M, Huda MN, Hosen MA, et al.
    Polymers (Basel), 2016 Jul 19;8(7).
    PMID: 30974542 DOI: 10.3390/polym8070261
    This study investigates the flexural behaviour of reinforced concrete (RC) beams strengthened through the combined externally bonded and near-surface mounted (CEBNSM) technique. The externally bonded reinforcement (EBR) and near-surface mounted (NSM) techniques are popular strengthening solutions, although these methods often demonstrate premature debonding failure. The proposed CEBNSM technique increases the bond area of the concrete⁻carbon fibre reinforced polymer (CFRP) interface, which can delay the debonding failure. This technique is appropriate when any structure has a narrow cross-sectional width or is in need of additional flexural capacity that an individual technique or material cannot attain. An experimental test matrix was designed with one control and five strengthened RC beams to verify the performance of the proposed technique. The strengthening materials were CFRP bar as NSM reinforcement combined with CFRP fabric as EBR material. The test variables were the diameter of the NSM bars (8 and 10 mm), the thickness of the CFRP fabrics (one and two layers) and the U-wrap anchorage. The strengthened beams showed enhancement of ultimate load capacity, stiffness, cracking behaviour, and strain compatibility. The ultimate capacity of the CEBNSM-strengthened beams increased from 71% to 105% compared to that of the control beam. A simulation method based on the moment-rotation approach was also presented to predict the behaviour of CEBNSM-strengthened RC beams.
    Matched MeSH terms: Textiles
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links