Affiliations 

  • 1 School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • 2 School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China. Electronic address: fanwei@xpu.edu.cn
  • 3 Co-Innovation Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • 4 School of Textile Science and Engineering, Key Laboratory of Functional Textile Material and Product (Xi'an Polytechnic University), Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China. Electronic address: wangchen2231@xpu.edu.cn
  • 5 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • 6 Faculty of Applied Sciences, Universiti Teknologi MARA, 94300 Kota Samarahan, Sarawak, Malaysia
  • 7 Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
  • 8 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
  • 9 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
  • 10 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India. Electronic address: lam@umt.edu.my
Sci Total Environ, 2023 Jan 15;856(Pt 1):158798.
PMID: 36116663 DOI: 10.1016/j.scitotenv.2022.158798

Abstract

The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.