Displaying publications 1 - 20 of 165 in total

  1. Yuik CJ, Mat Saman MZ, Ngadiman NHA, Hamzah HS
    Waste Manag Res, 2023 Mar;41(3):554-565.
    PMID: 36134680 DOI: 10.1177/0734242X221123486
    End-of-life vehicles (ELV) management is becoming a global concern in the automotive industry. However, there is still limited study on supply chain optimisation that focusses on specific ELV treatments. Therefore, this mini-review article analyses the supply chain optimisation for recycling and remanufacturing sustainable management in ELV. A total of 51 papers were reviewed from the year 2016 to 2021. The key topics in each article were assessed and classified into various themes, followed by the content analysis. The percentage breakdown for the six main themes are ELV recovery management system (37.25%), reverse logistic network design (29.41%), ELV economy analysis (15.69%), government regulation or subsidies (7.84%), ELV quantity forecast (5.88%) and ELV part design (3.92%). It can be concluded that ELV recovery management and reverse logistic network design are the top two key focusses of supply chain optimisation priorities that have been extensively applied to improve ELV development. The literature gap has shown that the study on remanufacturing in the ELV supply chain is minimal compared to recycling. The classification of ELV recycling and remanufacturing supply chain optimisation in this study will be beneficial in supporting real-life problem-solving for industrial applications. This study serves as a valuable reference guide to identifying more sustainable solutions in ELV management and promoting the critical focus area for academicians and industry players.
    Matched MeSH terms: Recycling*
  2. Azri S, Ujang U, Abdullah NS
    Waste Manag Res, 2023 Mar;41(3):687-700.
    PMID: 36129019 DOI: 10.1177/0734242X221123489
    Despite the government's policies and objectives, Malaysia lags behind in sustainable waste management techniques, particularly recycling. Bins should be located conveniently to encourage recycling and reduce waste. The current model of bin location-allocation is mostly determined by distance. However, it has been identified that previous studies excluded an important factor: litter pattern identification. Litter pattern is important to identify waste generation hotspots and litter distribution. Thus, we proposed the within cluster pattern identification (WCPI) approach to optimize the recycle point distribution. WCPI gathers the information on litter distribution using geotagged images and analyses the pattern distribution. The optimal location for recycle bin can be identified by incorporating k-means clustering to the pattern distribution. Since k-means faces the non-deterministic polynomial-time-hard challenge of selecting the ideal cluster and cluster centre, WCPI used the total within-cluster sum of square on top of k-means clustering. The proposed location by WCPI is validated in terms of accessibility and suitability. Furthermore, this study provides further analysis of carbon footprint that can be reduced by simulating the data from geotagged images. The results show that 10,323.55 kg of carbon emission can be reduced if the litter is sent for recycling. Thus, we believe that locating bins at an optimal location will embark on consumer motivation to dispose of recycled waste, reduce litter and lessen the carbon footprint. At the same time, these efforts could transform Malaysia into a clean and sustainable nation that aims to achieve Agenda 2030.
    Matched MeSH terms: Recycling/methods
  3. Wong YC, Mahyuddin N, Aminuddin AMR
    Waste Manag, 2020 Dec;118:402-415.
    PMID: 32947219 DOI: 10.1016/j.wasman.2020.08.036
    Recycling automotive waste has increasingly become an alternative solution towards producing sustainable materials given the rising issue of raw material shortages and waste management challenges at global level. The improper end-of-life vehicle (ELV) waste management poses detrimental impacts on the environment. This paper proposes a novel method to develop thermal insulation sandwich panels using ELV waste, motivated by the critical needs of creating high-performance thermal insulation for buildings. Six sandwich panels (P1-P6) of different weight and ratio of shredded ELV particles were manufactured. The sandwich panels structure was made of three layers: a core, and a glass face sheet bonded to each side. The core structure composed of Polycarbonate (PC) from headlamp lenses and polyurethane (PU) from seat, bonded using resin casting approach. Thermal conductivity of the samples was measured using guarded hot-plate apparatus. Results corroborated that thermal conductivity of ELV-based sandwich panels reduced remarkably compared to panel without ELVs, recorded at 15.51% reduction. Composition gives the best thermal performance was made of mixed ELV core materials of ratio 50%PC:50%PU, it has a thermal conductivity value of 0.1776 W/mK. The transparency data were obtained using Haze-gard plus haze meter. The best luminous transmittance value was exhibited by P2 (100% PC), 67.47%. The best clarity value and haze value were shown by P6 (25% PC: 75% PU), 55.13% and 52.6% respectively. ELV waste can be recycled to develop useful sustainable thermal insulation to improve thermal and optical transparency performance of buildings as a substitute for conventional materials which have a relevance for future façade concepts.
    Matched MeSH terms: Recycling*
  4. Paul SC
    Data Brief, 2017 Dec;15:987-992.
    PMID: 29159238 DOI: 10.1016/j.dib.2017.11.012
    This data presented herein are the research summary of "mechanical behavior and durability performance of concrete containing recycled concrete aggregate" (Paul, 2011) [1]. The results reported in this article relate to an important parameter of optimum content of recycle concrete aggregate (RCA) in production of new concrete for both structural and non-structural applications. For the purpose of the research various types of physical, mechanical and durability tests are performed for concrete made with different percentages of RCA. Therefore, this data set can be a great help of the readers to understand the mechanism of RCA in relates to the concrete properties.
    Matched MeSH terms: Recycling
  5. Sidique SF, Lupi F, Joshi SV
    J Environ Manage, 2013 Sep 30;127:339-46.
    PMID: 23810167 DOI: 10.1016/j.jenvman.2013.05.001
    Drop-off recycling is one of the most widely adopted recycling programs in the United States. Despite its wide implementation, relatively little literature addresses the demand for drop-off recycling. This study examines the demand for drop-off recycling sites as a function of travel costs and various site characteristics using the random utility model (RUM). The findings of this study indicate that increased travel costs significantly reduce the frequency of visits to drop-off sites implying that the usage pattern of a site is influenced by its location relative to where people live. This study also demonstrates that site specific characteristics such as hours of operation, the number of recyclables accepted, acceptance of commingled recyclables, and acceptance of yard-waste affect the frequency of visits to drop-off sites.
    Matched MeSH terms: Recycling/economics; Recycling/methods*; Recycling/trends
  6. Fatimah Mohamad Z, Idris N, Baharuddin A
    Waste Manag, 2011 Sep-Oct;31(9-10):1905-6.
    PMID: 21763121 DOI: 10.1016/j.wasman.2011.06.013
    Matched MeSH terms: Recycling/ethics*
  7. Ogiri IA, Sidique SF, Talib MA, Abdul-Rahim AS, Radam A
    Waste Manag Res, 2019 Jul;37(7):755-762.
    PMID: 30967098 DOI: 10.1177/0734242X19842328
    To encourage recycling in Malaysian households, a waste separation at source programme was implemented that made it mandatory for households to sort their waste into different categories before leaving it out for collection. Penalties designed to act as a deterrent are imposed on households that fail to sort their waste appropriately. But does this deterrence motivate compliance with the programme directives? This study employs the deterrence theory to investigate if deterrence alone is sufficient to motivate households to actively participate in recycling. A total of 866 questionnaires were administered in person in households in Putrajaya and Melaka. Data were analysed using structural equation modelling. The results of the structural model reveal that just 25% of the variance in compliance is explained by the severity of the sanction, and the perceived certainty of penalty imposed. Perceived severity of sanction (β = 0.149, p = 0.012) and perceived certainty of sanction (β = 0.383, p = 0.000) were found to contribute significantly to compliance behaviour to the programme directives. However, deterrence alone cannot motivate household participation in waste separation at source because it only explains 25% of compliance behaviour. The present study provides information that could allow policymakers to understand recycling habits better and implement more effective compliance strategies.
    Matched MeSH terms: Recycling*
  8. Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS
    Bioresour Technol, 2018 Jan;247:930-939.
    PMID: 30060432 DOI: 10.1016/j.biortech.2017.09.195
    This study investigated acclimation ability of native Chlorella sorokiniana (CS-N) and commercial Chlorella sorokiniana (CS-C) in palm oil mill effluent (POME), their metabolic profile and feasibility of effluent recycling for dilution purpose. Maximum specific growth rate, µmax and lag time, λ of the microalgae were evaluated. Result shows both strains produced comparable growth in POME, with µmax of 0.31 day-1 and 0.30 day-1 respectively, albeit longer λ by the CS-C. However, three cycles of acclimation was able to reduce λ from eight days to two days for CS-C. Metabolic profiling using principal component analysis (PCA) shows clear cluster of acclimatized strains to suggest better stress tolerance of CS-N. Finally, a remarkable µmax of 0.57 day-1 without lag phase was achieved using acclimatized CS-N in 40% POME concentration. Acclimation has successfully shortened the λ and dilution with final effluent was proved to be feasible for further improvement of the microalgae growth.
    Matched MeSH terms: Recycling*
  9. Tiew KG, Basri NEA, Deng H, Watanabe K, Zain SM, Wang S
    J Environ Manage, 2019 May 01;237:255-263.
    PMID: 30798044 DOI: 10.1016/j.jenvman.2019.02.033
    After twenty-four years of government efforts, the latest national recycling rate in Malaysia rose from 5% in 1993 to approximately 24.6% in 2017. However, the practice of solid waste recycling in developing countries is still challenging compared to developing countries. Especially in Malaysia, a multi-ethnic country where people with different ethics have different living lifestyles. Still, Malaysia faces rapidly increasing solid waste and management costs, lacks appropriate data on solid waste management and recycling, lacks awareness of the 3R's (reduce, reuse and recycle) culture and lacks policies to promote 3R's culture. In addition, prior to the enforcement of ACT 672, information and networks between stakeholders have been limited for more than 20 years. Some scholars believe that the success of recycling practices is mainly influenced by community recycling behaviours. Therefore, in order to improve and evaluate the effectiveness of current national solid waste recycling management systems, research and assessment of community recycling behaviours are essential. This paper aims to evaluate the factors that attract communities to implement recycling in their daily lives and to obtain data through quantitative survey methods. Face-to-face questionnaires are conducted through purposive sampling and collected data is further analysed by PASW statistical tools. The comparison between recyclers and non-recyclers are presented in terms of frequency, means scores and radar chart. The results indicate that policy makers involved in the planning, organisation, and implementation of community recycling programs have to focus on strategies that engage community members and adopt recycling practices to improve environmental impact by changing their attitudes. Based on the results of means scores, the type of age, occupation and place of life must be taken into consideration in order to organize future recycling campaigns or awareness programs. In conclusion, the information will help policymakers make better solid waste recycling management to meet the needs of the public.
    Matched MeSH terms: Recycling*
  10. Kamble CB, Raju R, Vishnu R, Rajkanth R, Pariatamby A
    Waste Manag Res, 2021 Nov;39(11):1427-1436.
    PMID: 34494917 DOI: 10.1177/0734242X211029159
    Management of waste is one of the major challenges faced by many developing countries. This study therefore attempts to develop a circular economy (CE) model to manage wastes and closing the loop and reducing the generation of residual wastes in Indian municipalities. Through extant literature review, the researchers found 30 success factors of CE implementation. Using the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) SIMOS approach, the rating and weight of decision makers (DMs) for each factor were collected. A structured questionnaire has been developed incorporating all these 30 factors, to extract the most important factors. The data was collected from top 10 officials (DMs) from the Chennai municipality, who handle three regions (metropolitan, suburbia and industrial). Based on the TOPSIS SIMOS analysis, nine CE implementing factors (critical success factors (CSFs)) among the 30 variables that were significant based on the cut-off value was identified. A CE model has been proposed based on these nine CSFs for waste management in India.
    Matched MeSH terms: Recycling*
  11. Mendoza Beltran A, Prado V, Font Vivanco D, Henriksson PJG, Guinée JB, Heijungs R
    Environ Sci Technol, 2018 02 20;52(4):2152-2161.
    PMID: 29406730 DOI: 10.1021/acs.est.7b06365
    Interpretation of comparative Life Cycle Assessment (LCA) results can be challenging in the presence of uncertainty. To aid in interpreting such results under the goal of any comparative LCA, we aim to provide guidance to practitioners by gaining insights into uncertainty-statistics methods (USMs). We review five USMs-discernibility analysis, impact category relevance, overlap area of probability distributions, null hypothesis significance testing (NHST), and modified NHST-and provide a common notation, terminology, and calculation platform. We further cross-compare all USMs by applying them to a case study on electric cars. USMs belong to a confirmatory or an exploratory statistics' branch, each serving different purposes to practitioners. Results highlight that common uncertainties and the magnitude of differences per impact are key in offering reliable insights. Common uncertainties are particularly important as disregarding them can lead to incorrect recommendations. On the basis of these considerations, we recommend the modified NHST as a confirmatory USM. We also recommend discernibility analysis as an exploratory USM along with recommendations for its improvement, as it disregards the magnitude of the differences. While further research is necessary to support our conclusions, the results and supporting material provided can help LCA practitioners in delivering a more robust basis for decision-making.
    Matched MeSH terms: Recycling*
  12. Kamar Zaman AM, Yaacob JS
    Environ Sci Pollut Res Int, 2022 Feb;29(9):12948-12964.
    PMID: 35034296 DOI: 10.1007/s11356-021-18006-z
    Consumption of natural resources and waste generation continues to rise as the human population increases. Ever since the industrial revolution, consumers have been adopting a linear economy model based on the 'take-make-dispose' approach. Raw materials are extracted to be converted into products and finally discarded as wastes. Consequently, this practice is unsustainable because it causes a massive increase in waste production. The root problems of the linear system can be addressed by transitioning to a circular economy. Circular economy is an economic model in which wastes from one product are recycled and used as resources for other processes. This literature review discovers the potential of vermicompost as a sustainable strategy in circular economy and highlights the benefits of vermicompost in ensuring food security, particularly in improving agricultural yield and quality, as well as boosting crop's nutritional quality. Vermicompost has the potential to be used in a variety of ways in the circular economy, including for agricultural sustainability, managing waste, pollutant remediation, biogas production and animal feed production. The recycling of organic wastes to produce vermicompost can benefit both the consumers and environment, thus paving the way towards a more sustainable agriculture for the future.
    Matched MeSH terms: Recycling*
  13. Rafiq W, Bin Napiah M, Hartadi Sutanto M, Salah Alaloul W, Nadia Binti Zabri Z, Imran Khan M, et al.
    Materials (Basel), 2020 Oct 22;13(21).
    PMID: 33105633 DOI: 10.3390/ma13214704
    Moisture damage in hot mix asphalt pavements is a periodic but persistent problem nowadays, even though laboratory testing is performed to identify different moisture-susceptible mixtures. In this study, a Hamburg Wheel Tracking device (HWTD) was used for rutting tests which were conducted on control and a high percentage of recycled asphalt pavement (RAP), i.e., 30%, 50% and 100% of virgin mixtures, under air dry and water-immersed conditions. Similarly, the extracted bitumen from RAP was tested for binder physical properties. Results showed that the asphalt mixtures containing RAP have less rut depth as compared to the control mix both in air dry and immersion conditions and hence showed better anti-rutting properties and moisture stability. Stripping performance of control and RAP containing mixtures was also checked, concluding that the RAP mixture was greatly dependent on the interaction between the binder (virgin plus aged) and aggregates.
    Matched MeSH terms: Recycling
  14. Bilema M, Aman MY, Hassan NA, Memon ZA, Omar HA, Yusoff NIM, et al.
    Materials (Basel), 2021 May 24;14(11).
    PMID: 34073812 DOI: 10.3390/ma14112781
    Researchers are exploring the utilisation of reclaimed asphalt pavement (RAP) as a recycled material to determine the performance of non-renewable natural aggregates and other road products such as asphalt binder, in the construction and rehabilitation stage of asphalt pavements. The addition of RAP in asphalt mixtures is a complex process and there is a need to understand the design of the asphalt mixture. Some of the problems associated with adding RAP to asphalt mixtures are moisture damage and cracking damage caused by poor adhesion between the aggregates and asphalt binder. There is a need to add rejuvenators to the recycled mixture containing RAP to enhance its performance, excepting the rutting resistance. This study sought to improve asphalt mixture performance and mechanism by adding waste frying oil (WFO) and crumb rubber (CR) to 25 and 40% of the RAP content. Moreover, the utilisation of CR and WFO improved pavement sustainability and rutting performance. In addition, this study prepared five asphalt mixture samples and compared their stiffness, moisture damage and rutting resistance with the virgin asphalt. The results showed enhanced stiffness and rutting resistance of the RAP but lower moisture resistance. The addition of WFO and CR restored the RAP properties and produced rutting resistance, moisture damage and stiffness, which were comparable to the virgin asphalt mixture. All waste and virgin materials produce homogeneous asphalt mixtures, which influence the asphalt mixture performance. The addition of a high amount of WFO and a small amount of CR enhanced pavement sustainability and rutting performance.
    Matched MeSH terms: Recycling
  15. Soni A, Das PK, Yusuf M, Kamyab H, Chelliapan S
    Sci Rep, 2022 Nov 07;12(1):18921.
    PMID: 36344577 DOI: 10.1038/s41598-022-19635-1
    Strict environmental concerns, depleting natural recourses, and rising demand for building construction materials have promoted scientific research toward alternative building materials. This research supports the idea of sustainability and a circular economy via the utilization of waste to produce value-added products. The research explored the potential of waste plastics and silica sand for developing thermoplastic composite as floor tiles. The samples were characterized by water absorption, compressive strength, flexural strength, and sliding wear. The morphological analysis of the sand-plastic interfaces was covered under the umbrella of this study. The maximum compressive and flexural strength were found to be 46.20 N/mm2 and 6.24 N/mm2, respectively, with the minimum water absorption and sliding wear rate of 0.039% and 0.143 × 10-8 kg/m, respectively. The study suggests the workability of the developed floor tiles in non-traffic areas of public places. Thus, the study provides a green building material through recycling waste plastics for sustainable development.
    Matched MeSH terms: Recycling
  16. Abdullah N, Al-Wesabi OA, Mohammed BA, Al-Mekhlafi ZG, Alazmi M, Alsaffar M, et al.
    Int J Environ Res Public Health, 2022 Oct 11;19(20).
    PMID: 36293647 DOI: 10.3390/ijerph192013066
    Urban areas worldwide are in the race to become smarter, and the Kingdom of Saudi Arabia (KSA) is no exception. Many of these have envisaged a chance to establish devoted municipal access networks to assist all kinds of city administration and preserve services needing data connectivity. Organizations unanimously concentrate on sustainability issues with key features of general trends, particularly the combination of the 3Rs (reduce waste, reuse and recycle resources). This paper demonstrates how the incorporation of the Internet of Things (IoT) with data access networks, geographic information systems and combinatorial optimization can contribute to enhancing cities' administration systems. A waste-gathering approach based on supplying smart bins is introduced by using an IoT prototype embedded with sensors, which can read and convey bin volume data over the Internet. However, from another perspective, the population and residents' attitudes directly affect the control of the waste management system. The conventional waste collection system does not cover all areas in the city. It works based on a planned scheme that is implemented by the authorized organization focused on specific popular and formal areas. The conventional system cannot observe a real-time update of the bin status to recognize whether the waste level condition is 'full,' 'not full,' or 'empty.' This paper uses IoT in the container and trucks that secure the overflow and separation of waste. Waste source locations and population density influence the volume of waste generation, especially waste food, as it has the highest amount of waste generation. The open public area and the small space location problems are solved by proposing different truck sizes based on the waste type. Each container is used for one type of waste, such as food, plastic and others, and uses the optimization algorithm to calculate and find the optimal route toward the full waste container. In this work, the situations in KSA are evaluated, and relevant aspects are explored. Issues relating to the sustainability of organic waste management are conceptually analyzed. A genetic-based optimization algorithm for waste collection transportation enhances the performance of waste-gathering truck management. The selected routes based on the volume status and free spaces of the smart bins are the most effective through those obtainable towards the urgent smart bin targets. The proposed system outperforms other systems by reducing the number of locations and smart bins that have to be visited by 46% for all waste types, whereas the conventional and existing systems have to visit all locations every day, resulting in high cost and consumption time.
    Matched MeSH terms: Recycling
  17. Seng TY, Singh R, Faridah QZ, Tan SG, Alwee SS
    Genet. Mol. Res., 2013;12(3):2360-7.
    PMID: 23546970 DOI: 10.4238/2013.March.11.1
    Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris-borate-ethylenediaminetetraacetic acid buffer, will further save time and cost. The 2.5% gel was prepared following the Agarose SFR(TM) manual by adding 2.5 g agarose powder into 100 mL 1X lithium borate buffer in a 250-mL flask with rapid stirring. Two midigels (105 x 83 mm, 17 wells) or 4 minigels (50 x 83 mm, 8 wells), 4 mm thickness can be prepared from 100 mL gel solution. A total of 1680 PCR products amplified using 140 SSR markers from oil palm DNA samples were tested in this study using SFR recycled gel. As average, the gel can be recycled 8 times with good resolution, but can be recycled up to 14 times before the resolutions get blurred.
    Matched MeSH terms: Recycling*
  18. Kaliyavaradhan SK, Ling TC, Guo MZ, Mo KH
    J Environ Manage, 2019 Jul 01;241:383-396.
    PMID: 31028969 DOI: 10.1016/j.jenvman.2019.03.017
    The exponential growth of waste generation is posing serious environmental issues and thus requires urgent management and recycling action to achieve green sustainable development. Controlled low-strength material (CLSM) is a highly flowable cementitious backfill material with self-consolidating properties. The CLSM efficiency during construction and final performance at the site depends on its plastic properties. Plastic properties are responsible for workability, pumpability, stability, and lateral pressure on adjacent soils. This paper presents a critical review to date on the use of waste materials and/or by-products and their impacts on the plastic properties of the CLSM. Extensive previous studies demonstrated that the basic properties and content of waste materials as well as the amount of water in the mix design, play a dominant role in determining the plastic properties of CLSM. The discussed plastic properties of CLSM include flowability, bleeding, segregation, and hardening time, which are found to be inter-related. Proper mix design adjustment to accommodate the use of waste materials is possible to produce sustainable CLSM with acceptable plastic properties. Additionally, the discussion and analysis presented in this paper could provide a basis for future research advances and the development of sustainable CLSM prepared with waste materials.
    Matched MeSH terms: Recycling*
  19. Simha P, Barton MA, Perez-Mercado LF, McConville JR, Lalander C, Magri ME, et al.
    Sci Total Environ, 2021 Apr 15;765:144438.
    PMID: 33418332 DOI: 10.1016/j.scitotenv.2020.144438
    Source-separating sanitation systems offer the possibility of recycling nutrients present in wastewater as crop fertilisers. Thereby, they can reduce agriculture's impacts on global sources, sinks, and cycles for nitrogen and phosphorous, as well as their associated environmental costs. However, it has been broadly assumed that people would be reluctant to perform the new sanitation behaviours that are necessary for implementing such systems in practice. Yet, few studies have tried to systematically gather evidence in support of this assumption. To address this gap, we surveyed 3763 people at 20 universities in 16 countries using a standardised questionnaire. We identified and systematically assessed cross-cultural and country-level explanatory factors that were strongly associated with people's willingness to consume food grown using human urine as fertiliser. Overall, 68% of the respondents favoured recycling human urine, 59% stated a willingness to eat urine-fertilised food, and only 11% believed that urine posed health risks that could not be mitigated by treatment. Most people did not expect to pay less for urine-fertilised food, but only 15% were willing to pay a price premium. Consumer perceptions were found to differ greatly by country and the strongest predictive factors for acceptance overall were cognitive factors (perceptions of risks and benefits) and social norms. Increasing awareness and building trust among consumers about the effectiveness of new sanitation systems via cognitive and normative messaging can help increase acceptance. Based on our findings, we believe that in many countries, acceptance by food consumers will not be the major social barrier to closing the loop on human urine. That a potential market exists for urine-fertilised food, however, needs to be communicated to other stakeholders in the sanitation service chain.
    Matched MeSH terms: Recycling*
  20. Lu L, Fan W, Meng X, Xue L, Ge S, Wang C, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158798.
    PMID: 36116663 DOI: 10.1016/j.scitotenv.2022.158798
    The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.
    Matched MeSH terms: Recycling*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links