MATERIALS AND METHODS: A UV-visible spectrophotometer and SEM were used to characterize the green synthesized SeNPs. The anti-inflammatory and anti-diabetic activities of green synthesized SeNPs were measured using the alphaamylase inhibitory & beta-glucosidase enzyme inhibition assay and the egg albumin, bovine serum albumin, and membrane stabilization assays. A test for the mortality of brine shrimp was used to determine the cytotoxic impact of SeNPs.
RESULTS: A. linearis powder was used for the green synthesis of selenium nanoparticles, which exhibited the highest peak at 440 nm when analyzed using a UV-visible spectrophotometer. The In vitro anti-inflammatory effect of synthesized SeNPs was maximally inhibited by 44-83% in the bovine serum albumin assay 54-79% in the egg albumin assay, and 54-86% in the membrane stabilization assay compared with standard. The inhibition percentage of antidiabetic activity was found to be 50-86% in the alphaamylase assay and 49-85% in the beta-glucosidase assay when compared to standards at various concentrations. Furthermore, the cytotoxicity impact shows that 70% of brine shrimp were alive at the maximum fixation of 80 µg/mL.
CONCLUSION: The SeNPs showed concentration-dependent anti-inflammatory and anti-diabetic action, and the green synthesized SeNPs demonstrated an excellent antiinflammatory and anti-diabetic agent. The brine shrimp lethality assay confirmed the SeNPs' biocompatible nature even at high concentrations with less toxicity. Hence the study may enhance SeNPs in developing inflammation drugs and can also be utilized in diabetes management.
METHODS: The reported data/information was retrieved mainly from the online databases of PubMed (MEDLINE), EMBASE and Botanical Survey of India.
RESULTS: The present review elaborated the phytochemical, pharmacological and biological properties of the selected five Tragia species obtained from recent literature.
CONCLUSION: This review provides a basis for future investigation of Tragia species and, especially for those species that have not been explored for biological and pharmacological activities.