Displaying publications 81 - 100 of 3940 in total

Abstract:
Sort:
  1. Al-Rabai'ah HA, Koh HL, DeAngelis D, Lee HL
    Water Sci Technol, 2002;46(9):71-8.
    PMID: 12448454
    Temperature variation is an important factor in Everglade wetlands ecology. A temperature fluctuation from 17 degrees C to 32 degrees C recorded in the Everglades may have significant impact on fish dynamics. The short life cycles of some of Everglade fishes has rendered this temperature variation to have even more impacts on the ecosystem. Fish population dynamic models, which do not explicitly consider seasonal oscillations in temperature, may fail to describe the details of such a population. Hence, a model for fish in freshwater marshes of the Florida Everglades that explicitly incorporates seasonal temperature variations is developed. The model's main objective is to assess the temporal pattern of fish population and densities through time subject to temperature variations. Fish population is divided into 2 functional groups (FGs) consisting of small fishes; each group is subdivided into 5-day age classes during their life cycles. Many governing sub-modules are set directly or indirectly to be temperature dependent. Growth, fecundity, prey availability, consumption rates and mortality are examples. Several mortality sub-modules are introduced in the model, of which starvation mortality is set to be proportional to the ratio of prey needed to prey available at that particular time step. As part of the calibration process, the model is run for 50 years to ensure that fish densities do not go to extinction, while the simulation period is about 8 years. The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
    Matched MeSH terms: Water Supply
  2. Mohamed M, Stednick JD, Smith FM
    Water Sci Technol, 2002;46(9):47-54.
    PMID: 12448451
    Some of the many tools used for watershed management are mathematical and computer models for wasteload allocations. QUAL2E is one of the most popular water quality models used for such purposes. The question arises as to whether the model is applicable in a different climate such as that in the tropics. In this study, QUAL2E was used to model Sg. Selangor River in Malaysia using the predictive equations for reaeration coefficient (k2) within the model and the measured reaeration coefficients for the river. The study results indicated that use of the reaeration coefficient (k2) measured at Sg. Selangor River did give the lowest standard error (SE) for the simulation of water quality during the 7Q10 low-flow period which is considered as the worst scene scenario in water quality modeling. But during calibration and validation using actual low-flow discharge data, the measured reaeration coefficients did not give the lowest standard error (SE). In conclusion, the results indicated that QUAL2E is applicable in tropical rivers when used with the modeled river parameters (i.e. hydraulic parameters, meteorological conditions etc.). Measured reaeration coefficients produced good results and several predictive equations also produced comparatively good results.
    Matched MeSH terms: Water Pollutants/analysis*; Water Supply/standards*
  3. Noor MJ, Muyibi SA, Ahmed T, Ghazall AH, Jusoh A, Idris A, et al.
    Water Sci Technol, 2002;46(9):331-8.
    PMID: 12448486
    A laboratory study was conducted on an Extended Aeration-Microfiltration (EAM) reactor in treating a food industry wastewater. The reactor contained horizontally laid hollow fibre microfiltration (MF) units that were fully submerged. The MF units were connected to a peristaltic pump that was used to extract permeate continuously under suction pressure. Continuous aeration from beneath the modules provided the crossflow effect to the MF units. Active activated sludge was used in the start-up where the sludge was mixed together with the feed water at a Food/Microorganisms (F/M) value of about 0.1. Primary effluent with Chemical Oxygen Demand (COD) values ranged between 1,500 and 3,000 mg/l was used as feed water. The EAM reactor was operated for nearly three months without initiating cleaning of the MF units. A suction pressure of 0.9 bar and Mixed Liquor Suspended Solids (MLSS) of over 5,500 mg/l were reached when nearing the end of the three month operation period. Permeate COD and turbidity reduction of over 97% and 99% respectively, were achieved. Prior to this, the MF module arrangements were studied; where vertically arranged modules were found to perform poorly as compared to the horizontally laid modules, in terms of clean water permeate flux.
    Matched MeSH terms: Water Purification/methods*
  4. Idris A, Yen OB, Hamid MH, Baki AM
    Water Sci Technol, 2002;46(9):279-86.
    PMID: 12448479
    A sludge lagoon has been adopted as a simple and cost effective method for dewatering of sludge. The processes occurring in a sludge lagoon include thickening, dewatering, storage and stabilization; all happening simultaneously. The objective of this study is to determine the dewatering and drying rates at pilot-scale which occur in a lagoon having different design configurations. Two types of sludge lagoons with different initial sludge depth (0.75 m and 0.375 m) were investigated to measure the drying behavior and drying efficiency. The first design is a sludge lagoon with a clay bottom where the dewatering mechanisms are decanting supernatant and evaporation. The second design is a sludge lagoon installed with a sand and underdrains system, where the dewatering mechanisms are filtration or draining and evaporation. Sludge drying kinetic models with high fitness were plotted to describe the sludge drying behavior. Drying of sludge in a sludge lagoon with a clay bottom can best be described by an exponential function. Whereas, drying of sludge in a sludge lagoon with sand and underdrains system followed a logarithmic function. A lagoon designed with sand and underdrains system and having shallower sludge depth was the most efficient. The reduction in volatile solids was lower than 4% during the study period. The drying process proceeded with an increase in dryness and decline in pH value.
    Matched MeSH terms: Water
  5. Aris A, Din MF, Salim MR, Yunus S, Abu Bakar WA
    Water Sci Technol, 2002;46(9):255-62.
    PMID: 12448476
    In Malaysia, most colored wastewater from dyeing factories is discharged to the environment causing serious problems. In this paper the influence of several reacting conditions, i.e. H2O2, pH, Ultraviolet (UV) intensity and dye concentration, on the performance of the immobilized system is discussed. The pH of the solution was varied from 3 to 11 while H2O2 concentration tested was from 10(-4) M to 5 x 10(-2) M. UV was tested at 365 nm and 254 nm, while dye concentration ranged from 2.5 x 10(-4) M to 10(-3) M. The influence of the reacting conditions was assessed based on absorbance. Using an OG concentration of 10(-3) M, the degradation increases from 17.8% to 49.7%. Optimum concentration of H2O2 was found to be 5 x 10(-3) M for degradation. Increasing the intensity of the UV light via shorter light wavelength also improves the performance of the system. Increasing the concentration of the dye reduces the overall performance of the system. Using the dye concentration of 2.5 x 10(-4) M (H2O2 = 10(-2) M, lambda = 254 nm, pH = 11), gives a degradation of 93.2%. At dye concentration of 10(-3) M, the performance was reduced to 53.1%.
    Matched MeSH terms: Water Purification/methods*
  6. Ahmad UK, Ulang Z, Yusop Z, Fong TL
    Water Sci Technol, 2002;46(9):117-25.
    PMID: 12448460
    The complex nature of natural organic matter (NOM), and the impact of this matter on drinking water quality have necessitated the characterization studies of NOM. A fluorescence technique for the characterization of NOM in Malaysian river water is reported. Water samples from several river sampling sites were collected and concentrated using a low-pressure reverse osmosis (LPROM). Solid phase extraction (SPE) using C18 extraction cartridges were used to fractionate the water samples into humic and non-humic fractions. To differentiate and classify various types of humic substances, fluorescence was applied in emission, excitation and in synchronous-scan modes. A synchronous spectral profile was found to be able to differentiate humic and fulvic acids better than the emission or excitation spectra. Synchronous excitation spectra showed different spectral patterns for the water samples due to different origin. All water samples showed the presence of both fulvic and humic acids.
    Matched MeSH terms: Water Pollutants/analysis*; Water Supply
  7. Ujang Z, Au YL, Nagaoka H
    Water Sci Technol, 2002;46(9):109-15.
    PMID: 12448459
    This paper describes an investigation on the effect of microbial removal using IMF for high quality drinking water production. The comparison of IMF and IMF-PAC configuration was carried out in the study to highlight the importance of PAC in the system. The specific objective of this study was to study the effect of PAC adsorption in the IMF-PAC system particularly in removing microbial substances from contaminated raw water. A bench scale IMF-PAC configuration using a flat sheet microfiltration membrane was set up for experimental purposes. Experimentally, the result has shown high removal of microbial substances with the IMF-PAC system compared to IMF. The result of E. coli removal achieved was below the detectable level due to the microbial size, which is bigger than membrane pore size. The addition of PAC has shown a direct effect on total microbial removal. The adsorption of microbial onto PAC surfaces reduced the amount of smaller microbial present in permeate samples. As a conclusion, the configuration of IMF is a promising separation process in removing microbial substances, especially when the system is combined with PAC.
    Matched MeSH terms: Water Microbiology*; Water Supply*; Water Purification/methods*
  8. Ujang Z, Salim MR, Khor SL
    Water Sci Technol, 2002;46(9):193-200.
    PMID: 12448469
    A laboratory-scale membrane bioreactor (MBR) was fed with synthetic wastewater to investigate the possibility of simultaneous removal of organic, nitrogen and phosphorus by intermittent aeration. The MBR consists of two compartments using a microfiltration membrane with 0.2 microm pore size and a surface area of 0.35 m2. Hydraulic retention time was set at 24 hours and solid retention time 25 days. MLSS concentration in the reactor was in the range of 2,500-3,800 mg/L. The MLSS internal recycling ratio was maintained at 100% influent flow rate. Intermittent aeration was applied in this study to provide an aerobic-anaerobic cycle. Three stages of operations were conducted to investigate the effect of aeration and non-aeration on simultaneous organic and nutrient removal. In Stage 1, time cycles of aeration and non-aeration were set at 90/150 min and 150/90 min in the first and second compartment, the removal efficiency was 97%, 94% and 70% for COD, nitrogen and phosphorus respectively. In Stage 2, time cycles of aeration and non-aeration were set at 60/120 min and 120/60 min in the first and second compartment, the removal efficiency was 97%, 96% and 71% for COD, nitrogen and phosphorus respectively. In Stage 3, time cycles of aeration and non-aeration were set at 120/120 min and 120/120 min in compartment 1 and 2, the removal efficiency was 98%, 96% and 78% for COD, nitrogen and phosphorus respectively. Results show that longer non-aeration time in the second compartment provided better performances of biological phosphorus removal.
    Matched MeSH terms: Water Purification/methods*
  9. Ismail R, Kassim MA, Inman M, Baharim NH, Azman S
    Water Sci Technol, 2002;46(9):179-83.
    PMID: 12448467
    Environmental monitoring was carried out at Upper Layang Reservoir situated in Masai, Johor, Malaysia. The study shows that thermal stratification and natural mixing of the water column do exist in the reservoir and the level of stratification varies at different times of the year. Artificial destratification via diffused air aeration techniques was employed at the reservoir for two months. The results show that thermal stratification was eliminated after a week of continuous aeration. The concentrations of iron and to a lesser extent manganese in the water column was also reduced during the aeration period.
    Matched MeSH terms: Water Movements; Water Supply*; Water Purification/methods*
  10. Jusoh AB, Noor MJ, Plow SB
    Water Sci Technol, 2002;46(9):127-35.
    PMID: 12448461
    The removal of natural organic matter (NOM) using a continuous flow fixed bed granular activated carbon (GAC) column was studied and the results were then fitted with the Adams-Bohart, Bed-Depth-Service-Time and Clarks models. The GAC, KI-6070 and KI-8085 used in the study had external surface areas of 277 m2/g and 547 m2/g, respectively. Adsorption of NOM by the GAC was complex and involved more than one rate-limiting step. The critical bed depths for KI-6070 and KI-8085 were 0.24 m and 0.3 m, respectively. The Clark model was more effective in simulating the absorbent breakthrough process as compared to the Adams-Bohart model. The lower empty bed contact time (EBCT) i.e. 15 minutes gave a better fit to the Clark Model as compared to EBCT of 20 and 30 minutes.
    Matched MeSH terms: Water Purification/methods*
  11. Abdul-Talib S, Hvitved-Jacobsen T, Vollertsen J, Ujang Z
    Water Sci Technol, 2002;45(3):53-60.
    PMID: 11902481
    The sewer is an integral part of the urban wastewater system: the sewer, the wastewater treatment plant and the local receiving waters. The sewer is a reactor for microbial changes of the wastewater during transport, affecting the quality of the wastewater and thereby the successive treatment processes or receiving water impacts during combined sewer overflows. This paper presents the results of studies on anoxic processes, namely denitrification, in the bulk water phase of wastewater as it occurs in sewers. Experiments conducted on 12 different wastewater samples have shown that the denitrification process in the bulk wastewater can be simplified by the reduction of nitrate to nitrogen with significant accumulation of nitrite in the water phase. Utilization of nitrate was observed not to be limited by nitrate for concentrations above 5 gNO3-N/m3. The denitrification rates, under conditions of excess substrate and electron acceptor, were found to be in the range of 0.8-2.0 g NO3-N/(m3h). A discussion on the interaction of the sewer processes and the effects on a downstream located wastewater treatment plant (WWTP) is provided.
    Matched MeSH terms: Water Purification/methods*
  12. Lee KM, Lim PE
    Water Sci Technol, 2003;47(10):41-7.
    PMID: 12862215
    The objective of this study is to investigate the potential of the activated rice husk to be used as an alternative adsorbent to powdered activated carbon (PAC) in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol. The rice husk (PRH) was activated by pyrolysis at 600 degrees C for 5 hours in a nitrogen atmosphere. Using the Langmuir model, the limiting adsorption capacities of PRH for the phenols were found to vary from 0.015-0.05 of those of PAC. The SBR reactors with and without adsorbent addition were operated with fill, react, settle, draw and idle periods in the ratio of 4:6:1:0.76:0.25 for a cycle time of 12 hours. For phenolic wastewater containing, 1,200 mg/L phenol, 1,200 mg/L p-methylphenol, 800 mg/L p-ethylphenol and 660 mg/L p-isopropylphenol, it was found that the biodegradation process alone was unable to produce effluent of quality which would satisfy the discharge standards of COD < or = 100 mg/L and phenol concentration < or = 1 mg/L. The addition of PAC in the ratio of PAC/phenolic compound at 0.095 g/g for phenol, 0.119 g/g for p-methylpheol, 0.179 g/g for p-ethylphenol and 0.220 g/g for p-isopropylphenol, can improve the effluent quality to satisfy the discharge standards. Equivalent treatment performance was achieved with the use of PRH at dosages of 2-3 times higher than those of PAC for all the phenolic wastewater studied. The increased adsorption capacity of PRH shown in the treatment indicates bioregeneration of the adsorbed surface during the treatment process.
    Matched MeSH terms: Water Purification/methods*
  13. Abdul-Rahman R, Tsuno H, Zainol N
    Water Sci Technol, 2002;45(12):197-204.
    PMID: 12201103
    Elevated levels of nutrients in agroindustry wastewaters, and higher reliance on chlorination pose health threats due to formation of chlorinated organics as well as increased chlorination costs. Removals of ammonium and nitrate compounds were studied using activated carbon from palm shells, as adsorbent and support media. Experiments were carried out at several loadings, F:M from 0.31 to 0.58, and hydraulic residence times (HRT) of 24 h, 12 h and 8 h. Results show that the wastewater treatment process achieved removals of over 90% for COD and 62% for Total-N. Studies on removals from river water were carried out in sequencing batch reactor (SBR) and activated carbon biofilm (ACB) reactor. Removals achieved by the SBR adsorption-biodegradation combination were 67.0% for COD, 58.8% for NH3-N and 25.5% for NO3-N while for adsorption alone the removals were only 37.0% for COD, 35.2% for NH3-N and 13.8% for NO3-N. In the ACB reactor, at HRT of 1.5 to 6 h, removals ranged from 12.5 to 100% for COD, 16.7 to 100% for NO3-N and 13.5 to 100% for NH3-N. Significant decrease in removals was shown at lower HRT. The studies have shown that substantial removals of COD, NO3-N and NH3-N from both wastewater and river water may be achieved via adsorption-biodegradation by biofilm on activated carbon processes.
    Matched MeSH terms: Water Pollutants/analysis*; Water Pollutants/metabolism
  14. Ujang Z, Buckley C
    Water Sci Technol, 2002;46(9):1-9.
    PMID: 12448446
    This paper summarises the paper presentation sessions at the Conference, as well giving insights on the issues related to developing countries. It also discusses the present status of practice and research on water and wastewater management, and projected future scenario based not only on the papers presented in the Conference, but also on other sources. The strategy is presented to overcome many problems in developing countries such as rapid urbanization, industrialization, population growth, financial and institutional problems and, depleting water resources. The strategy consists of Integrated Urban Water Management (IUWM), cleaner industrial production, waste minimisation and financial arrangements.
    Matched MeSH terms: Water Supply*
  15. Onyia CO, Uyu AM, Akunna JC, Norulaini NA, Omar AK
    Water Sci Technol, 2001;44(10):157-62.
    PMID: 11794647
    Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
    Matched MeSH terms: Water Movements
  16. Ujang Z, Henze M, Curtis T, Schertenleib R, Beal LL
    Water Sci Technol, 2004;49(8):1-10.
    PMID: 15193088
    This paper presents the existing philosophy, approach, criteria and delivery of environmental engineering education (E3) for developing countries. In general, environmental engineering is being taught in almost all major universities in developing countries, mostly under civil engineering degree programmes. There is an urgent need to address specific inputs that are particularly important for developing countries with respect to the reality of urbanisation and industrialisation. The main component of E3 in the near future will remain on basic sanitation in most developing countries, with special emphasis on the consumer-demand approach. In order to substantially overcome environmental problems in developing countries, E3 should include integrated urban water management, sustainable sanitation, appropriate technology, cleaner production, wastewater minimisation and financial framework.
    Matched MeSH terms: Water Supply
  17. Lim PE, Mak KY, Mohamed N, Noor AM
    Water Sci Technol, 2003;48(5):307-13.
    PMID: 14621178
    This study was conducted to: (1) evaluate the performance of constructed wetlands in removing Zn, Pb and Cd, respectively, and Zn, Pb, Cd and Cu in combination and (2) investigate the speciation patterns of the dissolved metals differentiated according to their detectability by anodic stripping voltammetry (ASV) and their lability towards Chelex resin along the treatment path of metal-containing wastewater in horizontal subsurface-flow constructed wetlands. Four laboratory scale wetland units planted with cattails (Typha latifolia) were operated outdoors for six months. Three of the units were, respectively, fed with primary-treated domestic wastewater spiked with Zn(II), Pb(II) and Cd(II) whilst the fourth was spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II). The results demonstrate that a metal removal efficiency of over 99% was achievable for wetland units treating the metals singly or in combination provided the sorption capacity of the media was not exceeded. When treating the metals in combination, an antagonistic effect, more significantly for Pb and Cd, on the sorptive metal uptake by media was observed. Based on the metal speciation patterns, the wetland system seemed to be capable of maintaining the ASV-labile metal species at relatively low level (< 10%) before media exhaustion.
    Matched MeSH terms: Water Movements; Water Pollutants/isolation & purification*; Water Purification/methods*
  18. Mak CY, Lin JG, Chen WH, Ng CA, Bashir MJK
    Water Sci Technol, 2019 May;79(10):1860-1867.
    PMID: 31294702 DOI: 10.2166/wst.2019.188
    The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4+-N and 96% NO2--N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.
    Matched MeSH terms: Waste Water
  19. Naje AS, Ajeel MA, Ali IM, Al-Zubaidi HAM, Alaba PA
    Water Sci Technol, 2019 Aug;80(3):458-465.
    PMID: 31596257 DOI: 10.2166/wst.2019.289
    In this work, landfill leachate treatment by electrocoagulation process with a novel rotating anode reactor was studied. The influence of rotating anode speed on the removal efficiency of chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS) of raw landfill leachate was investigated. The influence of operating parameters like leachate pH, leachate temperature, current, and inter-distance between the cathode rings and anode impellers on the electrocoagulation performance were also investigated. The results revealed the optimum rotating speed is 150 rpm and increasing the rotating speed above this value led to reducing process performance. The leachate electrocoagulation treatment process favors the neutral medium and the treatment performance increases with increasing current intensity. Furthermore, the electrocoagulation treatment performance improves with increasing leachate temperature. However, the performance reduces with increasing inter-electrode distance.
    Matched MeSH terms: Water Pollutants, Chemical*
  20. Chua SC, Show PL, Chong FK, Ho YC
    Water Sci Technol, 2020 Nov;82(9):1833-1847.
    PMID: 33201847 DOI: 10.2166/wst.2020.409
    Increasing agricultural irrigation to counteract a soil moisture deficit has resulted in the production of hazardous agricultural wastewater with high turbidity and chemical oxygen demand (COD). An innovative, sustainable, and effective solution is needed to overcome the pollution and water scarcity issues caused by the agricultural anthropogenic processes. This research focused on a sustainable solution that utilized a waste (broken lentil) as natural coagulant for turbidity and COD removal in agricultural wastewater treatment. The efficiency of the lentil extract (LE), grafted lentil extract (LE-g-DMC) and aluminium sulphate (alum) coagulants was optimized through the response surface methodology. Three-level Box-Behnken design was used to statistically visualize the complex interactions of pH, concentration of coagulants and settling time. LE achieved a significant 99.55% and 79.87% removal of turbidity and COD at pH 4, 88.46 mg/L of LE and 6.9 minutes of settling time, whereas LE-g-DMC achieved 99.83% and 80.32% removal of turbidity and COD at pH 6.7, 63.08 mg/L of LE-g-DMC and 5 minutes of settling time. As compared to alum, LE-g-DMC required approximately 30% less concentration. Moreover, LE and LE-g-DMC also required 75% and 65% less settling time as compared to the alum. Both LE and LE-g-DMC produced flocs with excellent settling ability (5.77 mg/L and 4.48 mL/g) and produced a significant less volume of sludge (10.60 mL/L and 8.23 mL/L) as compared with the alum. The economic analysis and assessments have proven the feasibility of both lentil-based coagulants in agricultural wastewater treatment.
    Matched MeSH terms: Water Purification*; Waste Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links