Displaying publications 81 - 82 of 82 in total

Abstract:
Sort:
  1. Shamshirband S, Petković D, Hashim R, Motamedi S
    PLoS One, 2014;9(7):e103414.
    PMID: 25075621 DOI: 10.1371/journal.pone.0103414
    Wind turbine noise is one of the major obstacles for the widespread use of wind energy. Noise tone can greatly increase the annoyance factor and the negative impact on human health. Noise annoyance caused by wind turbines has become an emerging problem in recent years, due to the rapid increase in number of wind turbines, triggered by sustainable energy goals set forward at the national and international level. Up to now, not all aspects of the generation, propagation and perception of wind turbine noise are well understood. For a modern large wind turbine, aerodynamic noise from the blades is generally considered to be the dominant noise source, provided that mechanical noise is adequately eliminated. The sources of aerodynamic noise can be divided into tonal noise, inflow turbulence noise, and airfoil self-noise. Many analytical and experimental acoustical studies performed the wind turbines. Since the wind turbine noise level analyzing by numerical methods or computational fluid dynamics (CFD) could be very challenging and time consuming, soft computing techniques are preferred. To estimate noise level of wind turbine, this paper constructed a process which simulates the wind turbine noise levels in regard to wind speed and sound frequency with adaptive neuro-fuzzy inference system (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
    Matched MeSH terms: Wind*
  2. Nurul Hidayah Sadikon, Ibrahim Mohamed, Dharini Pathmanathan, Adriana Irawati Nur Ibrahim
    Sains Malaysiana, 2018;47:1319-1326.
    A cylindrical data set consists of circular and linear variables. We focus on developing an outlier detection procedure
    for cylindrical regression model proposed by Johnson and Wehrly (1978) based on the k-nearest neighbour approach.
    The procedure is applied based on the residuals where the distance between two residuals is measured by the Euclidean
    distance. This procedure can be used to detect single or multiple outliers. Cut-off points of the test statistic are generated
    and its performance is then evaluated via simulation. For illustration, we apply the test on the wind data set obtained
    from the Malaysian Meteorological Department.
    Matched MeSH terms: Wind
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links