METHODS: Collation and review of existing estimates of IDU prevalence and HIV prevalence from published and unpublished documents for the period 1998-2003. The strength of evidence for the information was assessed based on the source and type of study.
RESULTS: Estimates of IDU prevalence were available for 130 countries. The number of IDU worldwide was estimated as approximately 13.2 million. Over ten million (78%) live in developing and transitional countries (Eastern Europe and Central Asia, 3.1 million; South and South-east Asia, 3.3 million; East-Asia and Pacific, 2.3 million). Estimates of HIV prevalence were available for 78 countries. HIV prevalence among IDU of over 20% was reported for at least one site in 25 countries and territories: Belarus, Estonia, Kazakhstan, Russia, Ukraine, Italy, Netherlands, Portugal, Serbia and Montenegro, Spain, Libya, India, Indonesia, Malaysia, Myanmar, Nepal, Thailand, Viet Nam, China, Argentina, Brazil, Uruguay, Puerto Rico, USA and Canada.
CONCLUSIONS: These findings update previous assessments of the number of countries with IDU and HIV-infected IDU, and the previous quantitative global estimates of the prevalence of IDU. However, gaps remain in the information and the strength of the evidence often was weak.
AREAS COVERED: In Central Asia, the number of new AIDS cases increased by 29%. It is more endemic in the poor population with variations in the cost of illness. Dengue is prevalent in more than 100 countries, including the Asia-Pacific region. In Southeast Asia, the annual economic burden of dengue fever was between $ 610 and $ 1,384 million, with a per capita cost of $ 1.06 to $ 2.41. Globally, 2.9 billion people are at risk of developing malaria, 90% of whom are residents of the Asia and Pacific region. The annual per capita cost of malaria control ranged from $ 0.11 to $ 39.06 and for elimination from $ 0.18 to $ 27.
EXPERT OPINION: The cost of AIDS, dengue, and malaria varies from country to country due to different health-care systems. The literature review has shown that the cost of dengue disease and malaria is poorly documented.
METHODS: We developed a linear optimisation model to estimate efficiency gains that could be achieved based on current procurement of OAT. We also developed a dynamic, compartmental population model of HIV transmission that included both injection and sexual risk to estimate the effect of OAT scale-up on HIV infections and mortality over a 10-year horizon. The compartmental population model was calibrated to HIV prevalence and incidence among PWID for 23 administrative regions of Ukraine. Sources for regional data included the SyrEx database, the Integrated Biological and Behavioral Survey, the Ukrainian Center for Socially Dangerous Disease Control of the Ministry of Health of Ukraine, the Public Health Center of the Ministry of Health of Ukraine, and the Ukrainian Census.
FINDINGS: Under a status-quo scenario (OAT coverage of 2·7% among PWID), the number of new HIV infections among PWID in Ukraine over the next 10 years was projected to increase to 58 820 (95% CI 47 968-65 535), with striking regional differences. With optimum allocation of OAT without additional increases in procurement, OAT coverage could increase from 2·7% to 3·3% by increasing OAT doses to ensure higher retention levels. OAT scale-up to 10% and 20% over 10 years would, respectively, prevent 4368 (95% CI 3134-5243) and 10 864 (7787-13 038) new HIV infections and reduce deaths by 7096 (95% CI 5078-9160) and 17 863 (12 828-23 062), relative to the status quo. OAT expansion to 20% in five regions of Ukraine with the highest HIV burden would account for 56% of new HIV infections and 49% of deaths prevented over 10 years.
INTERPRETATION: To optimise HIV prevention and treatment goals in Ukraine, OAT must be substantially scaled up in all regions. Increased medication procurement is needed, combined with optimisation of OAT dosing. Restricting OAT scale-up to some regions of Ukraine could benefit many PWID, but the regions most affected are not necessarily those with the highest HIV burden.
FUNDING: National Institute on Drug Abuse.
METHODS: The performance of the point-of-care Xpert HIV-1 viral load assay was evaluated against the Abbott RealTime PCR m2000rt system. A total of 96 plasma specimens ranging from 2.5 log10 copies ml-1 to 4.99 log10 copies ml-1 and proficiency testing panel specimens were used. Precision and accuracy were checked using the Pearson correlation co-efficient test and Bland-Altman analysis.
RESULTS: Compared to the Abbott RealTime PCR, the Xpert HIV-1 viral load assay showed a good correlation (Pearson r=0.81; P<0.0001) with a mean difference of 0.27 log10 copies ml-1 (95 % CI, -0.41 to 0.96 log10 copies ml-1; sd, 0.35 log10 copies ml-1).
CONCLUSION: Reliable and ease of testing individual specimens could make the Xpert HIV-1 viral load assay an efficient alternative method for ART monitoring in clinical management of HIV disease in resource-limited settings. The rapid test results (less than 2 h) could help in making an immediate clinical decision, which further strengthens patient care.