Displaying publications 81 - 85 of 85 in total

Abstract:
Sort:
  1. Tay BY, Ahmad N, Hashim R, Mohamed Zahidi J, Thong KL, Koh XP, et al.
    BMC Infect Dis, 2015;15:220.
    PMID: 26033227 DOI: 10.1186/s12879-015-0958-0
    Brucellosis is one of the most common zoonotic diseases worldwide. It can cause acute febrile illness in human and is a major health problem. Studies in human brucellosis in Malaysia is limited and so far no genotyping studies has been done on Brucella isolates. The aim of the study was to determine the genetic diversity among Brucella species isolated from human brucellosis, obtained over a 6-year period (2009-2014).
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  2. Yeoh CA, Chan CL, Chin CC, Tan WC
    Med J Malaysia, 2020 03;75(2):103-109.
    PMID: 32281589
    INTRODUCTION: Chlamydia trachomatis is one of the most common sexually transmitted diseases (STDs) globally. However, data on its prevalence and risk factors in Malaysia is still scarce.

    OBJECTIVE: We aimed to identify the prevalence and risk factors of genitourinary C.trachomatis infection among patients attending STD clinics in northern Peninsular Malaysia.

    METHODS: A hospital-based cross-sectional study was conducted in STD clinics of Hospital Pulau Pinang and Hospital Sultanah Bahiyah, Kedah from January to November 2014. Participants were individually interviewed using a structured data collection form followed by a physical examination and laboratory tests. Nucleic Acid Amplification Test (NAAT) was used to detect C.trachomatis infection. Analysis was carried out using SPSS Version 15.

    RESULTS: Eighty-three sexually active patients were enrolled, consisting of 51 males and 32 females. The median age was 28.0 years. In general, 32.5% patients were asymptomatic, the remaining presented with genital discharge (41.0%), genital warty lesion (25.3%), genital ulcer (13.3%), dysuria (13.3%), dyspareunia (2.4%), urine hesistancy (1.2%) and genital swelling (1.2%). The prevalence of genitourinary C.trachomatis infection was 21.7% in the study population; 17.6% in males and 28.1% in females. Among the infected females, 44.4% were pregnant. Of those infected 56.6% did not show any symptoms of genital infection, and 77.8% were aged between 18 and 30 years, of which most were females. Among newly diagnosed HIV patients, the prevalence was 14.3%. From multivariable logistic regression analysis, age under 28 years, being married and engagement in oral sex had significantly increased odds of C.trachomatis infection.

    CONCLUSIONS: C.trachomatis infection was common among patients attending STD clinics in northern Penisular Malaysia especially in the younger age groups. Majority of the infected patients were asymptomatic.

    Matched MeSH terms: Nucleic Acid Amplification Techniques
  3. Abd Rahim MR, Kho SL, Kuppusamy UR, Tan JA
    Clin. Lab., 2015;61(9):1325-30.
    PMID: 26554253
    BACKGROUND: Beta-thalassemia is the most common genetic disorder in Malaysia. Confirmation of the β-globin gene mutations involved in thalassemia is usually carried out by molecular analysis of DNA extracted from leukocytes in whole blood. Molecular analysis is generally carried out when affected children are around 1 - 2 years as clinical symptoms are expressed during this period. Blood taking at this age can be distressing for the child. High yield and pure DNA extracted from non-invasive sampling methods can serve as alternative samples in molecular studies for genetic diseases especially in pediatric cases.

    METHODS: In this study, mouthwash, saliva, and buccal cytobrush samples were collected from β-thalassemia major patients who had previously been characterized using DNA extracted from peripheral blood. DNA was extracted from mouthwash, saliva, and buccal cytobrush samples using the conventional inexpensive phenol-chloroform method and was measured by spectrophotometry for yield and purity. Molecular characterization of β-globin gene mutations was carried out using the amplification refractory mutation system (ARMS).

    RESULTS: DNA extracted from mouthwash, saliva, and buccal cytobrush samples produced high concentration and pure DNA. The purified DNA was successfully amplified using ARMS. Results of the β-globin gene mutations using DNA from the three non-invasive samples were in 100% concordance with results from DNA extracted from peripheral blood.

    CONCLUSIONS: The conventional in-house developed methods for non-invasive sample collection and DNA extraction from these samples are effective and negate the use of more expensive commercial kits. In conclusion, DNA extracted from mouthwash, saliva, and buccal cytobrush samples provided sufficiently high amounts of pure DNA suitable for molecular analysis of β-thalassemia.

    Matched MeSH terms: Nucleic Acid Amplification Techniques
  4. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
  5. Wang LY, Wang YS, Cheng H, Zhang JP, Yeok FS
    Ecotoxicology, 2015 Oct;24(7-8):1705-13.
    PMID: 26044931 DOI: 10.1007/s10646-015-1502-0
    Chitinases in terrestrial plants have been reported these are involved in heavy metal tolerance/detoxification. This is the first attempt to reveal chitinase gene (AcCHI I) and its function on metal detoxification in mangroves Aegiceras corniculatum. RT-PCR and RACE techniques were used to clone AcCHI I, while real-time quantitative PCR was employed to assess AcCHI I mRNA expressions in response to Cadmium (Cd). The deduced AcCHI I protein consists of 316 amino acids, including a signal peptide region, a chitin-binding domain (CBD) and a catalytic domain. Protein homology modeling was performed to identify potential features in AcCHI I. The CBD structure of AcCHI I might be critical for metal tolerance/homeostasis of the plant. Clear tissue-specific differences in AcCHI I expression were detected, with higher transcript levels detected in leaves. Results demonstrated that a short duration of Cd exposure (e.g., 3 days) promoted AcCHI I expression in roots. Upregulated expression was also detected in leaves under 10 mg/kg Cd concentration stress. The present study demonstrates that AcCHI I may play an important role in Cd tolerance/homeostasis in the plant. Further studies of the AcCHI I protein, gene overexpression, the promoter and upstream regulation will be necessary for clarifying the functions of AcCHI I.
    Matched MeSH terms: Nucleic Acid Amplification Techniques
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links