Displaying publications 101 - 120 of 352 in total

Abstract:
Sort:
  1. Kim YM, Abas F, Park YS, Park YK, Ham KS, Kang SG, et al.
    Molecules, 2021 Jul 21;26(15).
    PMID: 34361562 DOI: 10.3390/molecules26154405
    Fruit used in the common human diet in general, and kiwifruit and persimmon particularly, displays health properties in the prevention of heart disease. This study describes a combination of bioactivity, multivariate data analyses and fluorescence measurements for the differentiating of kiwifruit and persimmon, their quenching and antioxidant properties. The metabolic differences are shown, as well in the results of bioactivities and antioxidant capacities determined by ABTS, FRAP, CUPRAC and DPPH assays. To complement the bioactivity of these fruits, the quenching properties between extracted polyphenols and human serum proteins were determined by 3D-fluorescence spectroscopy studies. These properties of the extracted polyphenols in interaction with the main serum proteins in the human metabolism (human serum albumin (HSA), α-β-globulin (α-β G) and fibrinogen (Fgn)), showed that kiwifruit was more reactive than persimmon. There was a direct correlation between the quenching properties of the polyphenols of the investigated fruits with serum human proteins, their relative quantification and bioactivity. The results of metabolites and fluorescence quenching show that these fruits possess multiple properties that have a great potential to be used in industry with emphasis on the formulation of functional foods and in the pharmaceutical industry. Based on the quenching properties of human serum proteins with polyphenols and recent reports in vivo on human studies, we hypothesize that HSA, α-β G and Fgn will be predictors of coronary artery disease (CAD).
    Matched MeSH terms: Antioxidants/chemistry*
  2. Forid MS, Rahman MA, Aluwi MFFM, Uddin MN, Roy TG, Mohanta MC, et al.
    Molecules, 2021 Jul 30;26(15).
    PMID: 34361788 DOI: 10.3390/molecules26154634
    This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.
    Matched MeSH terms: Antioxidants/chemistry
  3. Toopkanloo SP, Tan TB, Abas F, Azam M, Nehdi IA, Tan CP
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322600 DOI: 10.3390/molecules25245873
    In order to improve the membrane lipophilicity and the affinity towards the environment of lipid bilayers, squalene (SQ) could be conjugated to phospholipids in the formation of liposomes. The effect of membrane composition and concentrations on the degradation of liposomes prepared via the extrusion method was investigated. Liposomes were prepared using a mixture of SQ, cholesterol (CH) and Tween80 (TW80). Based on the optimal conditions, liposome batches were prepared in the absence and presence of SQ. Their physicochemical and stability behavior were evaluated as a function of liposome constituent. From the optimization study, the liposomal formulation containing 5% (w/w) mixed soy lecithin (ML), 0.5% (w/w) SQ, 0.3% (w/w) CH and 0.75% (w/w) TW80 had optimal physicochemical properties and displayed a unilamellar structure. Liposome prepared using the optimal formulation had a low particle size (158.31 ± 2.96 nm) and acceptable %increase in the particle size (15.09% ± 3.76%) and %trolox equivalent antioxidant capacity (%TEAC) loss (35.69% ± 0.72%) against UV light treatment (280-320 nm) for 6 h. The interesting outcome of this research was the association of naturally occurring substance SQ for size reduction without the extra input of energy or mechanical procedures, and improvement of vesicle stability and antioxidant activity of ML-based liposome. This study also demonstrated that the presence of SQ in the membrane might increase the acyl chain dynamics and decrease the viscosity of the dispersion, thereby limiting long-term stability of the liposome.
    Matched MeSH terms: Antioxidants/chemistry
  4. Li R, Ru Y, Wang Z, He X, Kong KW, Zheng T, et al.
    Molecules, 2021 Jul 24;26(15).
    PMID: 34361630 DOI: 10.3390/molecules26154472
    In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.
    Matched MeSH terms: Antioxidants/chemistry*
  5. Suleiman JB, Mohamed M, Abu Bakar AB, Nna VU, Zakaria Z, Othman ZA, et al.
    Molecules, 2021 Aug 15;26(16).
    PMID: 34443531 DOI: 10.3390/molecules26164943
    The aim of the study was to determine the chemical profile, antioxidant properties and antimicrobial activities of Heterotrigona itama bee bread from Malaysia. The pH, presence of phytochemicals, antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC), as well as antimicrobial activities, were assessed. Results revealed a decrease in the pH of bee bread water extract (BBW) relative to bee bread ethanolic extract (BBE) and bee bread hot water extract (BBH). Further, alkaloids, flavonoids, phenols, tannins, saponins, terpenoids, resins, glycosides and xanthoproteins were detected in BBW, BBH and BBE. Also, significant decreases in TPC, TFC, DPPH activity and FRAP were detected in BBW relative to BBH and BBE. We detected phenolic acids such as gallic acid, caffeic acid, trans-ferulic acid, trans 3-hydroxycinnamic acid and 2-hydroxycinnamic acid, and flavonoids such as quercetin, kaempferol, apigenin and mangiferin in BBE using high-performance liquid chromatography analysis. The strongest antimicrobial activity was observed in Klebsilla pneumonia (MIC50 1.914 µg/mL), followed by E. coli (MIC50 1.923 µg/mL), Shigella (MIC50 1.813 µg/mL) and Salmonella typhi (MIC50 1.617 µg/mL). Bee bread samples possess antioxidant and antimicrobial properties. Bee bread contains phenolic acids and flavonoids, and could be beneficial in the management and treatment of metabolic diseases.
    Matched MeSH terms: Antioxidants/chemistry
  6. Mohamad Asri SF, Mohd Ramli ES, Soelaiman IN, Mat Noh MA, Abdul Rashid AH, Suhaimi F
    Molecules, 2016 Nov 15;21(11).
    PMID: 27854305
    Glucocorticoid-induced osteoporosis is one of the common causes of secondary osteoporosis. Piper sarmentosum (Ps) extract possesses antioxidant and anti-inflammatory activities. In this study, we determined the correlation between the effects of Ps leaf water extract with the regulation of 11β-hydroxysteroid dehydrogenase (HSD) type 1 enzyme activity in serum and bone of glucocorticoid-induced osteoporotic rats. Twenty-four Sprague-Dawley rats were grouped into following: G1: sham-operated group administered with intramuscular vehicle olive oil and vehicle normal saline orally; G2: adrenalectomized (adrx) control group given intramuscular dexamethasone (120 μg/kg/day) and vehicle normal saline orally; G3: adrx group given intramuscular dexamethasone (120 μg/kg/day) and water extract of Piper sarmentosum (125 mg/kg/day) orally. After two months, the femur and serum were taken for ELISA analysis. Results showed that Ps leaf water extract significantly reduced the femur corticosterone concentration (p < 0.05). This suggests that Ps leaf water extract was able to prevent bone loss due to long-term glucocorticoid therapy by acting locally on the bone cells by increasing the dehydrogenase action of 11β-HSD type 1. Thus, Ps may have the potential to be used as an alternative medicine against osteoporosis and osteoporotic fracture in patients on long-term glucocorticoid treatment.
    Matched MeSH terms: Antioxidants/chemistry
  7. Zokti JA, Sham Baharin B, Mohammed AS, Abas F
    Molecules, 2016 Jul 26;21(8).
    PMID: 27472310 DOI: 10.3390/molecules21080940
    Green tea polyphenols have been reported to possess many biological properties. Despite the many potential benefits of green tea extracts, their sensitivity to high temperature, pH and oxygen is a major disadvantage hindering their effective utilization in the food industry. Green tea leaves from the Cameron Highlands Malaysia were extracted using supercritical fluid extraction (SFE). To improve the stability, green tea extracts were encapsulated by spray-drying using different carrier materials including maltodextrin (MD), gum arabic (GA) and chitosan (CTS) and their combinations at different ratios. Encapsulation efficiency, total phenolic content and antioxidant capacity were determined and were found to be in the range of 71.41%-88.04%, 19.32-24.90 (g GAE/100 g), and 29.52%-38.05% respectively. Further analysis of moisture content, water activity, hygroscopicity, bulk density and mean particles size distribution of the microparticles were carried out and the results ranged from; 2.31%-5.11%, 0.28-0.36, 3.22%-4.71%, 0.22-0.28 g/cm³ and 40.43-225.64 µm respectively. The ability of the microparticles to swell in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was determined as 142.00%-188.63% and 207.55%-231.77%, respectively. Release of catechin polyphenol from microparticles in SIF was higher comparable to that of SGF. Storage stability of encapsulated catechin extracts under different temperature conditions was remarkably improved compared to non-encapsulated extract powder. This study showed that total catechin, total phenolic content (TPC) and antioxidant activity did not decrease significantly (p ≥ 0.05) under 4 °C storage conditions. The half-life study results were in the range of 35-60, 34-65 and 231-288 weeks at storage temperatures of 40 °C, 25 °C and 4 °C respectively, therefore, for improved shelf-life stability we recommend that microparticles should be stored at temperatures below 25 °C.
    Matched MeSH terms: Antioxidants/chemistry
  8. Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS
    Molecules, 2018 Jun 04;23(6).
    PMID: 29867000 DOI: 10.3390/molecules23061345
    This project studied the effect of vermicompost application on the composition of bioactive anthocyanin and phenolic compounds, and the antioxidant activity of Clinacanthus nutans. The correlation between the bioactive constituents and antioxidant capacity was also evaluated. In this project, a field study was conducted using a randomized complete block design (RCBD) with four treatment groups, including control plants (CC), plants supplied with chemical fertilizer (CF), plants supplied with vermicompost (VC), and plants supplied with mixed fertilizer (MF). The leaves of C. nutans from all treatment groups were harvested, subjected to solvent extraction, and used for quantification of total anthocyanin content (TAC), total phenolic content (TPC), and total flavonoid content (TFC). The initial antioxidant activity of the extracts was evaluated using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, as well as after two and four weeks of storage at -20 °C and 4 °C. Data analysis showed that CC plants contained the highest TAC (2180.14 ± 338.43 µg/g dry weight) and TFC (276.25 ± 3.09 mg QE/g dry weight). On the other hand, CF plants showed the highest TPC (181.53 ± 35.58 mg GAE/g dry weight). Moreover, we found that CC plants had the highest antioxidant potential against DPPH radicals whereas MF plants showed the lowest antioxidant potential. After four weeks of extract storage at -20 °C and 4 °C, the TPC, TFC, TAC, and antioxidant potential of the extracts decreased. Extracts from VC showed the lowest percentage of total phenolic and total flavonoid loss after extract storage at -20 °C and 4 °C compared with other plant extracts. At this juncture, it could be deduced that the application of vermicompost had little effect on the expression of phenolics, flavonoids, or anthocyanin in C. nutans. However, the extract from plants treated with vermicompost (VC and MF) showed better stability compared with CC and CF after extract storage at different temperatures.
    Matched MeSH terms: Antioxidants/chemistry
  9. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Antioxidants/chemistry*
  10. Ghasemzadeh A, Baghdadi A, Z E Jaafar H, Swamy MK, Megat Wahab PE
    Molecules, 2018 Jul 26;23(8).
    PMID: 30049990 DOI: 10.3390/molecules23081863
    Recently, the quality-by-design concept has been widely implemented in the optimization of pharmaceutical processes to improve batch-to-batch consistency. As flavonoid compounds in pigmented rice bran may provide natural antioxidants, extraction of flavonoid components from red and brown rice bran was optimized using central composite design (CCD) and response surface methodology (RSM). Among the solvents tested, ethanol was most efficient for extracting flavonoids from rice bran. The examined parameters were temperature, solvent percentage, extraction time, and solvent-to-solid ratio. The highest total flavonoid content (TFC) in red rice bran was predicted as 958.14 mg quercetin equivalents (QE)/100 g dry matter (DM) at 58.5 °C, 71.5% (v/v), 36.2 min, and 7.94 mL/g, respectively, whereas the highest TFC in brown rice bran was predicted as 782.52 mg QE/100 g DM at 56.7 °C, 74.4% (v/v), 36.9 min, and 7.18 mL/g, respectively. Verification experiment results under these optimized conditions showed that the TFC values for red and brown rice bran were 962.38 and 788.21 mg QE/100 g DM, respectively. No significant differences were observed between the predicted and experimental TFC values, indicating that the developed models are accurate. Analysis of the extracts showed that apigenin and p-coumaric acid are abundant in red and brown rice bran. Further, red rice bran with its higher flavonoid content exhibited higher nitric oxide and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (EC50 values of 41.3 and 33.6 μg/mL, respectively) than brown rice bran. In this study, an extraction process for flavonoid compounds from red and brown rice bran was successfully optimized. The accuracy of the developed models indicated that the approach is applicable to larger-scale extraction processes.
    Matched MeSH terms: Antioxidants/chemistry*
  11. Azizi S, Mohamad R, Mahdavi Shahri M
    Molecules, 2017 Feb 16;22(2).
    PMID: 28212344 DOI: 10.3390/molecules22020301
    In this paper, a green microwave-assisted combustion approach to synthesize ZnO-NPs using zinc nitrate and Citrullus colocynthis (L.) Schrad (fruit, seed and pulp) extracts as bio-fuels is reported. The structure, optical, and colloidal properties of the synthesized ZnO-NP samples were studied. Results illustrate that the morphology and particle size of the ZnO samples are different and depend on the bio-fuel. The XRD results revealed that hexagonal wurtzite ZnO-NPs with mean particle size of 27-85 nm were produced by different bio-fuels. The optical band gap was increased from 3.25 to 3.40 eV with the decreasing of particle size. FTIR results showed some differences in the surface structures of the as-synthesized ZnO-NP samples. This led to differences in the zeta potential, hydrodynamic size, and more significantly, antioxidant activity through scavenging of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) free radicals. In in vitro cytotoxicity studies on 3T3 cells, a dose dependent toxicity with non-toxic effect of concentration below 0.26 mg/mL was shown for ZnO-NP samples. Furthermore, the as-synthesized ZnO-NPs inhibited the growth of medically significant pathogenic gram-positive (Bacillus subtilis and Methicillin-resistant Staphylococcus aurous) and gram-negative (Peseudomonas aeruginosa and Escherichia coli) bacteria. This study provides a simple, green and efficient approach to produce ZnO nanoparticles for various applications.
    Matched MeSH terms: Antioxidants/chemistry
  12. Hellal K, Maulidiani M, Ismail IS, Tan CP, Abas F
    Molecules, 2020 Mar 10;25(5).
    PMID: 32164186 DOI: 10.3390/molecules25051247
    Claims of effective therapy against diabetes using plants including Peganum harmala L., Zygophyllum album, Anacyclus valentinus L., Ammodaucus leucotrichus, Lupinus albus, and Marrubium vulgare in Algerian empirical medicine prompted our interest in evaluating their antidiabetic activity by screening their free radical scavenging (DPPH), α-glucosidase, and nitric oxide (NO) inhibitory activities as well as the total phenolic content (TPC). Extracts of the selected plants were prepared using different ratios of ethanol (0, 50, 80, and 100%). In this study, 100%, and 80% ethanol extracts of L. albus were found to be the most potent, in inhibiting α-glucosidase activity with IC50 values of 6.45 and 8.66 μg/mL, respectively. The 100% ethanol extract of A. leucotrichus exhibited the highest free radical scavenging activity with an IC50 value of 26.26 μg/mL. Moreover, the highest TPC of 612.84 μg GAE/mg extract was observed in M. vulgare, extracted with 80% ethanol. Metabolite profiling of the active extract was conducted using 1H-NMR metabolomics. Partial least square analysis (PLS) was used to assess the relationship between the α-glucosidase inhibitory activity of L. albus and the metabolites identified in the extract. Based on the PLS model, isoflavonoids (lupinoisoflavone G, lupisoflavone, lupinoisolone C), amino acids (asparagine and thiamine), and several fatty acids (stearic acid and oleic acid) were identified as metabolites that contributed to the inhibition of α-glucosidase activity. The results of this study have clearly strengthened the traditional claim of the antihyperglycemic effects of L. albus.
    Matched MeSH terms: Antioxidants/chemistry*
  13. Zulkifli SA, Abd Gani SS, Zaidan UH, Halmi MIE
    Molecules, 2020 Feb 12;25(4).
    PMID: 32059460 DOI: 10.3390/molecules25040787
    The present study was conducted to optimize extraction process for defatted pitaya seed extract (DPSE) adopting response surface methodology (RSM). A five-level central composite design was used to optimize total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis (3-ethylbenzothizoline-6-sulfonic acid (ABTS) activities. The independent variables included extraction time (30-60 min), extraction temperature (40-80 °C) and ethanol concentration (60%-80%). Results showed that the quadratic polynomial equations for all models were significant at (p < 0.05), with non-significant lack of fit at p > 0.05 and R2 of more than 0.90. The optimized extraction parameters were established as follows: extraction time of 45 min, extraction temperature of 70 °C and ethanol concentration of 80%. Under these conditions, the recovery of TPC, TFC, and antioxidant activity based on FRAP and ABTS were 128.58 ± 1.61 mg gallic acid equivalent (GAE)/g sample, 9.805 ± 0.69 mg quercetin equivalent (QE)/g sample, 1.23 ± 0.03 mM Fe2+/g sample, and 91.62% ± 0.15, respectively. Ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) analysis identified seven chemical compounds with flavonoids constituting major composition of the DPSE.
    Matched MeSH terms: Antioxidants/chemistry
  14. Azman KF, Aziz CBA, Zakaria R, Ahmad AH, Shafin N, Ismail CAN
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500857 DOI: 10.3390/molecules26175424
    Tualang honey has been shown to protect against neurodegeneration, leading to improved memory/learning as well as mood. In addition, studies have also demonstrated its anti-inflammatory and antioxidant properties. However, a substantial part of this research lacks systematization, and there seems to be a tendency to start anew with every study. This review presents a decade of research on Tualang honey with a particular interest in the underlying mechanisms related to its effects on the central nervous system. A total of 28 original articles published between 2011 and 2020 addressing the central nervous system (CNS) effects of Tualang honey were analysed. We identified five main categories, namely nootropic, antinociceptive, stress-relieving, antidepressant, and anxiolytic effects of Tualang honey, and proposed the underlying mechanisms. The findings from this review may potentially be beneficial towards developing new therapeutic roles for Tualang honey and help in determining how best to benefit from this brain supplement.
    Matched MeSH terms: Antioxidants/chemistry*
  15. Chai TT, Koh JA, Wong CC, Sabri MZ, Wong FC
    Molecules, 2021 Dec 06;26(23).
    PMID: 34885982 DOI: 10.3390/molecules26237396
    Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
    Matched MeSH terms: Antioxidants/chemistry
  16. Ng WJ, Sit NW, Ooi PA, Ee KY, Lim TM
    Molecules, 2021 Dec 16;26(24).
    PMID: 34946710 DOI: 10.3390/molecules26247628
    Stingless bee honey, specifically honeydew honey, is generally valued for its better health benefits than those of most blossom types. However, scientific studies about the differentiation of stingless bee honey based on honeydew and blossom origins are very limited. In this study, 13C NMR spectroscopy was employed to quantify the seven major sugar tautomers in stingless bee honey samples, and the major sugar compositions of both honeydew and blossom types were found not significantly different. However, several physicochemical properties of honeydew honey including moisture content, free acidity, electrical conductivity, ash content, acetic acid, diastase, hydrogen peroxide, and mineral elements levels were significantly higher; while total soluble solid, proline, and hydroxymethylfurfural were significantly lower than blossom honey. Greater antioxidant capacity in honeydew honey was proven with higher total phenolic compounds, ABTS, DPPH, superoxide radical scavenging activities, peroxyl radical inhibition, iron chelation, and ferric reducing power. Using principal component analysis (PCA), two clusters of stingless bee honey from the honeydew and blossom origin were observed. PCA also revealed that the differentiation between honeydew and blossom origin of stingless bee honey is possible with certain physicochemical and antioxidant parameters. The combination of NMR spectroscopy and chemometrics are suggested to be useful to determine the authenticity and botanical origin of stingless bee honey.
    Matched MeSH terms: Antioxidants/chemistry*
  17. Al-Mijalli SH, Mrabti NN, Ouassou H, Sheikh RA, Assaggaf H, Bakrim S, et al.
    Molecules, 2022 Oct 28;27(21).
    PMID: 36364152 DOI: 10.3390/molecules27217329
    The purposes of this investigatory study were to determine the chemical composition of the essential oils (EOs) of Origanum compactum from two Moroccan regions (Boulemane and Taounate), as well as the evaluation of their biological effects. Determining EOs' chemical composition was performed by a gas chromatography-mass spectrophotometer (GC-MS). The antioxidant activity of EOs was evaluated using free radical scavenging ability (DPPH method), fluorescence recovery after photobleaching (FRAP), and lipid peroxidation inhibition assays. The anti-inflammatory effect was assessed in vitro using the 5-lipoxygenase (5-LOX) inhibition test and in vivo using the carrageenan-induced paw edema model. Finally, the antibacterial effect was evaluated against several strains using the disk-diffusion assay and the micro-dilution method. The chemical constituent of O. compactum EO (OCEO) from the Boulemane zone is dominated by carvacrol (45.80%), thymol (18.86%), and α-pinene (13.43%). However, OCEO from the Taounate zone is rich in 3-carene (19.56%), thymol (12.98%), and o-cymene (11.16%). OCEO from Taounate showed higher antioxidant activity than EO from Boulemane. Nevertheless, EO from Boulemane considerably inhibited 5-LOX (IC50 = 0.68 ± 0.02 µg/mL) compared to EO from Taounate (IC50 = 1.33 ± 0.01 µg/mL). A similar result was obtained for tyrosinase inhibition with Boulemane EO and Taounate EO, which gave IC50s of 27.51 ± 0.03 μg/mL and 41.83 ± 0.01 μg/mL, respectively. The in vivo anti-inflammatory test showed promising effects; both EOs inhibit and reduce inflammation in mice. For antibacterial activity, both EOs were found to be significantly active against all strains tested in the disk-diffusion test, but O. compactum EO from the Boulemane region showed the highest activity. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) for O. compactum EO from the Boulemane region ranged from 0.06 to 0.25% (v/v) and from 0.15 to 0.21% (v/v) for O. compactum from the Taounate region. The MBC/MIC index revealed that both EOs exhibited remarkable bactericidal effects.
    Matched MeSH terms: Antioxidants/chemistry
  18. Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, Al Awadh AA, et al.
    Molecules, 2022 Nov 09;27(22).
    PMID: 36431794 DOI: 10.3390/molecules27227693
    Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
    Matched MeSH terms: Antioxidants/chemistry
  19. Tsai ML, Lin CD, Khoo KA, Wang MY, Kuan TK, Lin WC, et al.
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206180 DOI: 10.3390/molecules22122154
    'Mato Peiyu' pomelo (Citrus grandis (L.) Osbeck 'Mato Peiyu') leaves from pruning are currently an agricultural waste. The aim of this study was to isolate essential oils from these leaves through steam distillation (SD) and solvent-free microwave extraction (SFME) and to evaluate their applicability to skin care by analyzing their antimicrobial, antioxidant (diphenyl-1-picrylhydrazyl scavenging assay, β-carotene/linoleic acid assay, and nitric oxide scavenging assay), anti-inflammatory (5-lipoxygenase inhibition assay), and antityrosinase activities. The gas chromatography-mass spectrometry results indicated that the main components of 'Mato Peiyu' leaf essential oils were citronellal and citronellol, with a total percentage of 50.71% and 59.82% for SD and SFME, respectively. The highest bioactivity among all assays was obtained for 5-lipoxygenase inhibition, with an IC50 value of 0.034% (v/v). The MIC90 of the antimicrobial activity of essential oils against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans ranged from 0.086% to 0.121% (v/v). Citronellal and citronellol were the main contributors, accounting for at least 54.58% of the essential oil's bioactivity. This paper is the first to report the compositions and bioactivities of 'Mato Peiyu' leaf essential oil, and the results imply that the pomelo leaf essential oil may be applied in skin care.
    Matched MeSH terms: Antioxidants/chemistry*
  20. Mohamed Isa SSP, Ablat A, Mohamad J
    Molecules, 2018 Feb 13;23(2).
    PMID: 29438299 DOI: 10.3390/molecules23020400
    Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as "Kemboja". It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3-O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di-O-methylellagic acid, kaempferol-3-O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3-O-α-l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.
    Matched MeSH terms: Antioxidants/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links