We present an observation of photon-photon production of τ lepton pairs in ultraperipheral lead-lead collisions. The measurement is based on a data sample with an integrated luminosity of 404 μb^{-1} collected by the CMS experiment at a center-of-mass energy per nucleon pair of sqrt[s_{NN}]=5.02 TeV. The γγ→τ^{+}τ^{-} process is observed for τ^{+}τ^{-} events with a muon and three charged hadrons in the final state. The measured fiducial cross section is σ(γγ→τ^{+}τ^{-})=4.8±0.6(stat)±0.5(syst) μb, where the second (third) term corresponds to the statistical (systematic) uncertainty in σ(γγ→τ^{+}τ^{-}) in agreement with leading-order QED predictions. Using σ(γγ→τ^{+}τ^{-}), we estimate a model-dependent value of the anomalous magnetic moment of the τ lepton of a_{τ}=0.001_{-0.089}^{+0.055}.
Central exclusive and semiexclusive production of pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central production are measured as functions of invariant mass, transverse momentum, and rapidity of the system in the fiducial region defined as transverse momentum and pseudorapidity . The production cross sections for the four resonant channels , , , and are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13TeV.
A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb^{-1} of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ(pp→A^{'}→χ_{1}χ_{2}) and the decay branching fraction B(χ_{2}→χ_{1}μ^{+}μ^{-}), where A^{'} is a dark photon and χ_{1} and χ_{2} are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.
The first search for scalar leptoquarks produced in τ-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb^{-1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength.
The mass of the top quark is measured in 36.3fb-1 of LHC proton-proton collision data collected with the CMS detector at s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be 171.77±0.37GeV. This approach significantly improves the precision over previous measurements.
A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at sqrt[s]=13 TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb^{-1}. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of 6638_{-38}^{+43}(stat)_{-31}^{+16}(syst) MeV. Another structure with even higher significance is found at a mass of 6847_{-28}^{+44}(stat)_{-20}^{+48}(syst) MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134_{-25}^{+48}(stat)_{-15}^{+41}(syst) MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.
The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at sqrt[s]=13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.
A search is presented for the single production of vector-like quarks in proton-proton collisions at
s
= 13
TeV
. The data, corresponding to an integrated luminosity of 35.9
fb
- 1
, were recorded with the CMS experiment at the LHC. The analysis focuses on the vector-like quark decay into a top quark and a W boson, with one muon or electron in the final state. The mass of the vector-like quark candidate is reconstructed from hadronic jets, the lepton, and the missing transverse momentum. Methods for the identification of b quarks and of highly Lorentz boosted hadronically decaying top quarks and W bosons are exploited in this search. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03
pb
for vector-like quark masses of 700 to 2000
GeV
. Mass exclusion limits up to 1660
GeV
are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel.
A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at s = 13 Te . The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9 fb - 1 . Final states studied for T T ¯ production include those where one of the T quarks decays via T → t Z and the other via T → b W , t Z , or t H , where H is a Higgs boson. For the B B ¯ case, final states include those where one of the B quarks decays via B → b Z and the other B → t W , b Z , or b H . Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T → t Z , and B → b Z , T and B quark mass values below 1280 and 1130 Ge , respectively, are excluded.
The first search for singly produced narrow resonances decaying to three well-separated hadronic jets is presented. The search uses proton-proton collision data corresponding to an integrated luminosity of 138 fb^{-1} at sqrt[s]=13 TeV, collected at the CERN LHC. No significant deviations from the background predictions are observed between 1.75 and 9.00 TeV. The results provide the first mass limits on a right-handed boson Z_{R} decaying to three gluons and on an excited quark decaying via a vector boson to three quarks, as well as updated limits on a Kaluza-Klein gluon decaying via a radion to three gluons.
A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at s=13TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138fb-1. The 95% confidence level upper limit set on the branching fraction of the 125GeV Higgs boson to invisible particles, B(H→inv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous B(H→inv) searches carried out at s=7, 8, and 13TeV in complementary production modes. The combined upper limit at 95% confidence level on B(H→inv) is 0.15 (0.08 expected).
The production of ϒ(2S) and ϒ(3S) mesons in lead-lead (Pb-Pb) and proton-proton (pp) collisions is studied in their dimuon decay channel using the CMS detector at the LHC. The ϒ(3S) meson is observed for the first time in Pb-Pb collisions, with a significance above 5 standard deviations. The ratios of yields measured in Pb-Pb and pp collisions are reported for both the ϒ(2S) and ϒ(3S) mesons, as functions of transverse momentum and Pb-Pb collision centrality. These ratios, when appropriately scaled, are significantly less than unity, indicating a suppression of ϒ yields in Pb-Pb collisions. This suppression increases from peripheral to central Pb-Pb collisions. Furthermore, the suppression is stronger for ϒ(3S) mesons compared to ϒ(2S) mesons, extending the pattern of sequential suppression of quarkonium states in nuclear collisions previously seen for the J/ψ, ψ(2S), ϒ(1S), and ϒ(2S) mesons.
The standard model (SM) production of four top quarks ( t t ¯ t t ¯ ) in proton-proton collisions is studied by the CMS Collaboration. The data sample, collected during the 2016-2018 data taking of the LHC, corresponds to an integrated luminosity of 137 fb - 1 at a center-of-mass energy of 13 TeV . The events are required to contain two same-sign charged leptons (electrons or muons) or at least three leptons, and jets. The observed and expected significances for the t t ¯ t t ¯ signal are respectively 2.6 and 2.7 standard deviations, and the t t ¯ t t ¯ cross section is measured to be 12 . 6 - 5.2 + 5.8 fb . The results are used to constrain the Yukawa coupling of the top quark to the Higgs boson, y t , yielding a limit of | y t / y t SM | < 1.7 at 95 % confidence level, where y t SM is the SM value of y t . They are also used to constrain the oblique parameter of the Higgs boson in an effective field theory framework, H ^ < 0.12 . Limits are set on the production of a heavy scalar or pseudoscalar boson in Type-II two-Higgs-doublet and simplified dark matter models, with exclusion limits reaching 350-470 GeV and 350-550 GeV for scalar and pseudoscalar bosons, respectively. Upper bounds are also set on couplings of the top quark to new light particles.
A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13
Te
. The data correspond to an integrated luminosity of 35.9
fb
- 1
and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of b -tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120
Ge
and the production of top squarks with masses as large as 1230
Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at s = 13 Te , corresponding to an integrated luminosity of 35.9 fb - 1 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H → γ γ , Z Z , W W , τ τ , b b , and μ μ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be μ = 1.17 ± 0.10 , assuming a Higgs boson mass of 125.09 Ge . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Δ ϕ 12 , is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 Te and corresponding to an integrated luminosity of 35.9 fb - 1 are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 ∘ < Δ ϕ 12 < 180 ∘ . The 2- and 3-jet measurements are not simultaneously described by any of models.
A search is presented for a heavy pseudoscalar boson A decaying to a Z boson and a Higgs boson with mass of 125 GeV . In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9 fb - 1 collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 Te . The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and 1000 GeV .
A search for new physics in top quark production is performed in proton-proton collisions at 13 TeV . The data set corresponds to an integrated luminosity of 35.9 fb - 1 collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating t W from t t ¯ events and exploiting the specific sensitivity of the t W process to new physics.
A search for heavy resonances with masses above 1 TeV , decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W ' and Z ' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.
The nuclear modification factors of J / ψ and ψ (2S) mesons are measured in PbPb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The analysis is based on PbPb and p p data samples collected by CMS at the LHC in 2015, corresponding to integrated luminosities of 464 μ b - 1 and 28 pb -1 , respectively. The measurements are performed in the dimuon rapidity range of | y | < 2.4 as a function of centrality, rapidity, and transverse momentum ( p T ) from p T = 3 GeV / c in the most forward region and up to 50 GeV / c . Both prompt and nonprompt (coming from b hadron decays) J / ψ mesons are observed to be increasingly suppressed with centrality, with a magnitude similar to the one observed at s NN = 2.76 TeV for the two J / ψ meson components. No dependence on rapidity is observed for either prompt or nonprompt J / ψ mesons. An indication of a lower prompt J / ψ meson suppression at p T > 25 GeV / c is seen with respect to that observed at intermediate p T . The prompt ψ (2S) meson yield is found to be more suppressed than that of the prompt J / ψ mesons in the entire p T range.