Displaying publications 121 - 138 of 138 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Mar 02;120(9):092301.
    PMID: 29547300 DOI: 10.1103/PhysRevLett.120.092301
    The azimuthal anisotropy Fourier coefficients (v_{n}) in 8.16 TeV p+Pb data are extracted via long-range two-particle correlations as a function of the event multiplicity and compared to corresponding results in pp and PbPb collisions. Using a four-particle cumulant technique, v_{n} correlations are measured for the first time in pp and p+Pb collisions. The v_{2} and v_{4} coefficients are found to be positively correlated in all collision systems. For high-multiplicity p+Pb collisions, an anticorrelation of v_{2} and v_{3} is observed, with a similar correlation strength as in PbPb data at the same multiplicity. The new correlation results strengthen the case for a common origin of the collectivity seen in p+Pb and PbPb collisions in the measured multiplicity range.
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):368.
    PMID: 31148943 DOI: 10.1140/epjc/s10052-019-6863-8
    A measurement of the top quark-antiquark pair production cross section σ t t ¯ in proton-proton collisions at a centre-of-mass energy of 13 Te is presented. The data correspond to an integrated luminosity of 35.9 fb - 1 , recorded by the CMS experiment at the CERN LHC in 2016. Dilepton events ( e ± μ ∓ , μ + μ - , e + e - ) are selected and the cross section is measured from a likelihood fit. For a top quark mass parameter in the simulation of m t MC = 172.5 Ge the fit yields a measured cross section σ t t ¯ = 803 ± 2 (stat) ± 25 (syst) ± 20 (lumi) pb , in agreement with the expectation from the standard model calculation at next-to-next-to-leading order. A simultaneous fit of the cross section and the top quark mass parameter in the powheg simulation is performed. The measured value of m t MC = 172.33 ± 0.14 (stat) - 0.72 + 0.66 (syst) Ge is in good agreement with previous measurements. The resulting cross section is used, together with the theoretical prediction, to determine the top quark mass and to extract a value of the strong coupling constant with different sets of parton distribution functions.
  3. CMS Collaboration, Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, et al.
    Eur Phys J C Part Fields, 2020;80(3):189.
    PMID: 32226948 DOI: 10.1140/epjc/s10052-020-7739-7
    A search is presented for τ slepton pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV . The search is carried out in events containing two τ leptons in the final state, on the assumption that each τ slepton decays primarily to a τ lepton and a neutralino. Events are considered in which each τ lepton decays to one or more hadrons and a neutrino, or in which one of the τ leptons decays instead to an electron or a muon and two neutrinos. The data, collected with the CMS detector in 2016 and 2017, correspond to an integrated luminosity of 77.2 fb - 1 . The observed data are consistent with the standard model background expectation. The results are used to set 95% confidence level upper limits on the cross section for τ slepton pair production in various models for τ slepton masses between 90 and 200 GeV and neutralino masses of 1, 10, and 20 GeV . In the case of purely left-handed τ slepton production and decay to a τ lepton and a neutralino with a mass of 1 GeV , the strongest limit is obtained for a τ slepton mass of 125 GeV at a factor of 1.14 larger than the theoretical cross section.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(10):710.
    PMID: 31999279 DOI: 10.1140/epjc/s10052-017-5267-x
    A search for new phenomena is performed using events with jets and significant transverse momentum imbalance, as inferred through the M T 2 variable. The results are based on a sample of proton-proton collisions collected in 2016 at a center-of-mass energy of 13 TeV with the CMS detector and corresponding to an integrated luminosity of 35.9 fb -1 . No excess event yield is observed above the predicted standard model background, and the results are interpreted as exclusion limits at 95% confidence level on the masses of predicted particles in a variety of simplified models of R-parity conserving supersymmetry. Depending on the details of the model, 95% confidence level lower limits on the gluino (light-flavor squark) masses are placed up to 2025 (1550) GeV . Mass limits as high as 1070 (1175) GeV are set on the masses of top (bottom) squarks. Information is provided to enable re-interpretation of these results, including model-independent limits on the number of non-standard model events for a set of simplified, inclusive search regions.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(11):886.
    PMID: 31764915 DOI: 10.1140/epjc/s10052-019-7387-y
    A search for new physics in top quark production is performed in proton-proton collisions at 13 TeV . The data set corresponds to an integrated luminosity of 35.9 fb - 1 collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating t W from t t ¯  events and exploiting the specific sensitivity of the t W process to new physics.
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2020;80(8):718.
    PMID: 32834020 DOI: 10.1140/epjc/s10052-020-8166-5
    Central exclusive and semiexclusive production of pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central production are measured as functions of invariant mass, transverse momentum, and rapidity of the system in the fiducial region defined as transverse momentum and pseudorapidity . The production cross sections for the four resonant channels , , , and are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13TeV.
  7. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(1):15.
    PMID: 28260978 DOI: 10.1140/epjc/s10052-016-4504-z
    A measurement of the top quark pair production ([Formula: see text]) cross section in proton-proton collisions at the centre-of-mass energy of 8[Formula: see text] is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6[Formula: see text]. This analysis is performed in the [Formula: see text] decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured [Formula: see text] cross section is [Formula: see text]. This measurement is compared with an analysis of 7[Formula: see text] data, corresponding to an integrated luminosity of 5.0[Formula: see text], to determine the ratio of 8[Formula: see text] to 7[Formula: see text] cross sections, which is found to be [Formula: see text]. The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.
  8. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):325.
    PMID: 28280439 DOI: 10.1140/epjc/s10052-016-4156-z
    A measurement of the forward-backward asymmetry [Formula: see text] of oppositely charged lepton pairs ([Formula: see text] and [Formula: see text]) produced via [Formula: see text] boson exchange in pp collisions at [Formula: see text] [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 19.7[Formula: see text] collected with the CMS detector at the LHC. The measurement of [Formula: see text] is performed for dilepton masses between 40[Formula: see text] and 2[Formula: see text] and for dilepton rapidity up to 5. The [Formula: see text] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2020;80(5):370.
    PMID: 32633732 DOI: 10.1140/epjc/s10052-020-7858-1
    A measurement is presented of differential cross sections for t-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 Te by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb - 1 , events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ( p T ), rapidity, and polarisation angle, the charged lepton p T and rapidity, and the p T of the W  boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W  boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 ± 0.070 , in agreement with the standard model prediction.
  10. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(11):751.
    PMID: 31999282 DOI: 10.1140/epjc/s10052-017-5140-y
    Measurements of the associated production of a
    Z
    boson with at least one jet originating from a b quark in proton-proton collisions at


    s

    =
    8

    TeV

    are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8



    fb

    -
    1



    .
    Z
    bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the
    b
    jet and the
    Z
    boson. Ratios of differential cross sections for the associated production with at least one
    b
    jet to the associated production with any jet are also presented. The production of a
    Z
    boson with at least two
    b
    jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2020;80(1):43.
    PMID: 32026888 DOI: 10.1140/epjc/s10052-019-7585-7
    A measurement is presented of electroweak (EW) production of a W boson in association with two jets in proton-proton collisions at s = 13 Te . The data sample was recorded by the CMS Collaboration at the LHC and corresponds to an integrated luminosity of 35.9 fb - 1 . The measurement is performed for the ℓ ν jj final state (with ℓ ν indicating a lepton-neutrino pair, and j representing the quarks produced in the hard interaction) in a kinematic region defined by invariant mass m jj > 120 Ge and transverse momenta p T j > 25 Ge . The cross section of the process is measured in the electron and muon channels yielding σ EW ( W jj ) = 6.23 ± 0.12 (stat) ± 0.61 (syst) pb per channel, in agreement with leading-order standard model predictions. The additional hadronic activity of events in a signal-enriched region is studied, and the measurements are compared with predictions. The final state is also used to perform a search for anomalous trilinear gauge couplings. Limits on anomalous trilinear gauge couplings associated with dimension-six operators are given in the framework of an effective field theory. The corresponding 95% confidence level intervals are - 2.3 < c W W W / Λ 2 < 2.5 Te - 2 , - 8.8 < c W / Λ 2 < 16 Te - 2 , and - 45 < c B / Λ 2 < 46 Te - 2 . These results are combined with the CMS EW Zjj analysis, yielding the constraint on the c W W W coupling: - 1.8 < c W W W / Λ 2 < 2.0 Te - 2 .
  12. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):236.
    PMID: 28515665 DOI: 10.1140/epjc/s10052-017-4730-z
    The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9[Formula: see text] collected at [Formula: see text], and 19.6[Formula: see text] at [Formula: see text]. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for [Formula: see text] are [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text]. Differential cross sections with respect to the [Formula: see text] boson [Formula: see text], the leading jet [Formula: see text], and the number of jets are obtained using the [Formula: see text] data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
  13. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(5):327.
    PMID: 28943785 DOI: 10.1140/epjc/s10052-017-4853-2
    Searches are presented for direct production of top or bottom squark pairs in proton-proton collisions at the CERN LHC. Two searches, based on complementary techniques, are performed in all-jet final states that are characterized by a significant imbalance in transverse momentum. An additional search requires the presence of a charged lepton isolated from other activity in the event. The data were collected in 2015 at a centre-of-mass energy of 13[Formula: see text] with the CMS detector and correspond to an integrated luminosity of 2.3[Formula: see text]. No statistically significant excess of events is found beyond the expected contribution from standard model processes. Exclusion limits are set in the context of simplified models of top or bottom squark pair production. Models with top and bottom squark masses up to 830 and 890[Formula: see text], respectively, are probed for light neutralinos. For models with top squark masses of 675[Formula: see text], neutralino masses up to 260[Formula: see text] are excluded at 95% confidence level.
  14. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(5):354.
    PMID: 28943789 DOI: 10.1140/epjc/s10052-017-4912-8
    A measurement of the top quark mass is reported in events containing a single top quark produced via the electroweak t channel. The analysis is performed using data from proton-proton collisions collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb[Formula: see text]. Top quark candidates are reconstructed from their decay to a [Formula: see text] boson and a b quark, with the [Formula: see text] boson decaying leptonically to a muon and a neutrino. The final state signature and kinematic properties of single top quark events in the t channel are used to enhance the purity of the sample, suppressing the contribution from top quark pair production. A fit to the invariant mass distribution of reconstructed top quark candidates yields a value of the top quark mass of [Formula: see text]. This result is in agreement with the current world average, and represents the first measurement of the top quark mass in event topologies not dominated by top quark pair production, therefore contributing to future averages with partially uncorrelated systematic uncertainties and a largely uncorrelated statistical uncertainty.
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):401.
    PMID: 28286414 DOI: 10.1140/epjc/s10052-016-4219-1
    A measurement of the W boson pair production cross section in proton-proton collisions at [Formula: see text] TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4[Formula: see text]. The [Formula: see text] candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured [Formula: see text] cross section is [Formula: see text], consistent with the standard model prediction. The [Formula: see text] cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95 % confidence level intervals are [Formula: see text], [Formula: see text], [Formula: see text], in the HISZ basis.
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):317.
    PMID: 28775662 DOI: 10.1140/epjc/s10052-016-4149-y
    A search for narrow resonances decaying to an electron and a muon is presented. The [Formula: see text] [Formula: see text] mass spectrum is also investigated for non-resonant contributions from the production of quantum black holes (QBHs). The analysis is performed using data corresponding to an integrated luminosity of 19.7[Formula: see text] collected in proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS detector at the LHC. With no evidence for physics beyond the standard model in the invariant mass spectrum of selected [Formula: see text] pairs, upper limits are set at 95 [Formula: see text] confidence level on the product of cross section and branching fraction for signals arising in theories with charged lepton flavour violation. In the search for narrow resonances, the resonant production of a [Formula: see text] sneutrino in R-parity violating supersymmetry is considered. The [Formula: see text] sneutrino is excluded for masses below 1.28[Formula: see text] for couplings [Formula: see text], and below 2.30[Formula: see text] for [Formula: see text] and [Formula: see text]. These are the most stringent limits to date from direct searches at high-energy colliders. In addition, the resonance searches are interpreted in terms of a model with heavy partners of the [Formula: see text] boson and the photon. In a framework of TeV-scale quantum gravity based on a renormalization of Newton's constant, the search for non-resonant contributions to the [Formula: see text] [Formula: see text] mass spectrum excludes QBH production below a threshold mass [Formula: see text] of 1.99[Formula: see text]. In models that invoke extra dimensions, the bounds range from 2.36[Formula: see text] for one extra dimension to 3.63[Formula: see text] for six extra dimensions. This is the first search for QBHs decaying into the [Formula: see text] [Formula: see text] final state.
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):371.
    PMID: 28280444 DOI: 10.1140/epjc/s10052-016-4206-6
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons ([Formula: see text]) in proton-proton collisions collected by the CMS experiment at the LHC at [Formula: see text]. The data correspond to an integrated luminosity of 19.7[Formula: see text]. The search considers [Formula: see text] resonances with masses between 1 and 3[Formula: see text], having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and [Formula: see text] events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 % confidence level for the product of the production cross section and branching fraction [Formula: see text] range from 10 to 1.5[Formula: see text] for the mass of X from 1.15 to 2.0[Formula: see text], significantly extending previous searches. For a warped extra dimension theory with a mass scale [Formula: see text] [Formula: see text], the data exclude radion scalar masses between 1.15 and 1.55[Formula: see text].
  18. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links