Displaying publications 121 - 140 of 376 in total

Abstract:
Sort:
  1. Lohrey S, Chua M, Gros C, Faucet J, Lee JKW
    Sci Total Environ, 2021 Nov 10;794:148260.
    PMID: 34328123 DOI: 10.1016/j.scitotenv.2021.148260
    Extreme heat is an increasing climate threat, most pronounced in urban areas where poor populations are at particular risk. We analyzed heat impacts and vulnerabilities of 1027 outdoor workers who participated in a KAP survey in Hanoi, Vietnam in 2018, and the influence of their mitigation actions, their knowledge of heat-risks, and access to early warnings. We grouped respondents by their main income (vendors, builders, shippers, others, multiple jobs, and non-working) and analyzed their reported heat-health impacts, taking into consideration socioeconomics, knowledge of heat impacts and preventive measures, actions taken, access to air-conditioning, drinking amounts and use of weather forecasts. We applied linear and logistic regression analyses using R. Construction workers were younger and had less knowledge of heat-health impacts, but also reported fewer symptoms. Older females were more likely to report symptoms and visit a doctor. Access to air-conditioning in the bedroom depended on age and house ownership, but did not influence heat impacts as cooling was too expensive. Respondents who knew more heat exhaustion symptoms were more likely to report impacts (p < 0.01) or consult a doctor (p < 0.05). Similarly, those who checked weather updates were more likely to report heat impacts (p < 0.01) and experienced about 0.6 more symptoms (p < 0.01). Even though occupation type did not explain heat illness, builders knew considerably less (40%; p < 0.05) about heat than other groups but were twice as likely to consult a doctor than street vendors (p < 0.01). Knowledge of preventive actions and taking these actions both correlated positively with reporting of heat-health symptoms, while drinking water did not reduce these symptoms (p < 0.01). Child carers and homeowners experienced income losses in heatwaves (p < 0.01). The differences support directed actions, such as dissemination of educational materials and weather forecasts for construction workers. The Red Cross assisted all groups with cooling tents, provision of drinks and health advice.
  2. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
  3. Senanayake S, Pradhan B, Huete A, Brennan J
    Sci Total Environ, 2021 Nov 10;794:148788.
    PMID: 34323751 DOI: 10.1016/j.scitotenv.2021.148788
    Healthy farming systems play a vital role in improving agricultural productivity and sustainable food production. The present study aimed to propose an efficient framework to evaluate ecologically viable and economically sound farming systems using a matrix-based analytic hierarchy process (AHP) and weighted linear combination method with geo-informatics tools. The proposed framework has been developed and tested in the Central Highlands of Sri Lanka. Results reveal that more than 50% of farming systems demonstrated moderate status in terms of ecological and economic aspects. However, two vulnerable farming systems on the western slopes of the Central Highlands, named WL1a and WM1a, were identified as very poor status. These farming systems should be a top priority for restoration planning and soil conservation to prevent further deterioration. Findings indicate that a combination of ecologically viable (nine indicators) and economical sound (four indicators) criteria are a practical method to scrutinize farming systems and decision making on soil conservation and sustainable land management. In addition, this research introduces a novel approach to delineate the farming systems based on agro-ecological regions and cropping areas using geo-informatics technology. This framework and methodology can be employed to evaluate the farming systems of other parts of the country and elsewhere to identify ecologically viable and economically sound farming systems concerning soil erosion hazards. The proposed approach addresses a new dimension of the decision-making process by evaluating the farming systems relating to soil erosion hazards and suggests introducing policies on priority-based planning for conservation with low-cost strategies for sustainable land management.
  4. Khoo KS, Chia WY, Wang K, Chang CK, Leong HY, Maaris MNB, et al.
    Sci Total Environ, 2021 Nov 01;793:148705.
    PMID: 34328982 DOI: 10.1016/j.scitotenv.2021.148705
    Fuel cells (FCs) are a chemical fuel device which can directly convert chemical energy into electrical energy, also known as electrochemical generator. Proton exchange membrane fuel cells (PEMFCs) are one of the most appealing FC systems that have been broadly developed in recent years. Due to the poor conductivity of electrolyte membrane used in traditional PEMFC, its operation at higher temperature is greatly limited. The incorporation of ionic liquids (ILs) which is widely regarded as a greener alternative compared to traditional solvents in the proton exchange membrane electrolyte shows great potential in high temperature PEMFCs (HT-PEMFCs). This review provides insights in the latest progress of utilizing ILs as an electrochemical electrolyte in PEMFCs. Besides, electrolyte membranes that are constructed by ILs combined with polybenzimidazole (PBI) have many benefits such as better thermal stability, improved mechanical properties, and higher proton conductivity. The current review aims to investigate the newest development and existing issues of ILs research in electrolyte and material selection, system fabrication method, synthesis of ILs, and experimental techniques. The evaluation of life cycle analysis, commercialization, and greenness of ILs are also discussed. Hence, this review provides insights to material scientists and develops interest of wider community, promoting the use of ILs to meet energy challenges.
  5. Khan AH, Aziz HA, Khan NA, Dhingra A, Ahmed S, Naushad M
    Sci Total Environ, 2021 Nov 10;794:148484.
    PMID: 34217082 DOI: 10.1016/j.scitotenv.2021.148484
    The occurrence of pharmaceutical residues in the aquatic ecosystem is an emerging concern of environmentalists. This study primarily investigated the seasonal variation of high-priority pharmaceutical residues in the Yamuna River, accompanied by 22 drains discharge from different parts of Delhi. Five sampling sites were selected for analyzing high-priority pharmaceuticals along with physico-chemical and biological parameters for 3 season's viz. pre-monsoon (PrM), monsoon (DuM), and post-monsoon (PoM), respectively. The maximum occurrences were detected during the PoM, compared to the PrM and DuM seasons. The maximum concentration of BOD, COD, and Phosphate was detected at the last sampling station (SP-5). Similarly, all targeted pharmaceuticals concentration were maximum at the last sampling point i.e. Okhla barrage (SP-5, max: DIC = 556.1 ng/l, IBU = 223.4 ng/l, CAR = 183.1 ng/l, DIA = 457.8 ng/l, OFL = 1726.5 ng/l, FRU = 312.2 ng/l and SIM = 414.9 ng/l) except at Barapulla downstream (SP-4, max: ERY = 178.1 ng/l). The mean concentrations of Fecal coliform (FC) ranged from 1700 to 6500 CFU/100 ml. The maximum colonies were detected in PrM season (6500 CFU/100 ml) followed by PoM (5800 CFU/100 ml) and least in DuM (1700 CFU/100 ml). Risk quotient (RQ) analysis of high-priority pharmaceuticals indicated high ecotoxicological risks exposure (>1) from DIC, DIA, OFL, and SIM in all seasons at all the sampling sites. However, lower risk was predicted for IBU, CAR, ERY, and FRU, respectively. This risk assessment indicated an aquatic ecosystem potentially exposed to high risks from these pharmaceutical residues. Moreover, seasonal agricultural application, rainfall, and temperature could influence the levels and compositions of pharmaceutical residue in the aquatic ecosystem. Hence, attention is required particularly to this stream since it is only a local lifeline source for urban consumers for domestic water supply and farmers for cultivation.
  6. Chin JY, Teoh GH, Ahmad AL, Low SC
    Sci Total Environ, 2021 Nov 10;794:148657.
    PMID: 34198076 DOI: 10.1016/j.scitotenv.2021.148657
    Surging growth of aquaculture industry has alarmed the public when the wastewater discharged had an adverse effect on the environment. This current study is a pioneer in the use of membrane distillation (MD) to treat real aquaculture wastewater. In addition to excellent hydrophobicity, the slippery surface of membrane used for MD is another key factor that enhances the performance of MD. The slippery surface of the membrane was tuned by layering high-viscosity and low-viscosity polypropylene (PP) polymers on the electrospun membrane by solvent-exchanged method. While the high-viscosity PP coating (PP/HV) rendered the membrane surface slippery, the low-viscosity PP coating (PP/LV) caused the fish farm wastewater to have stick-slip movement on the membrane surface. In the long-term 70-hour direct contact membrane distillation (DCMD) separation, PP/HV and PP/LV membranes can perfectly eliminate the undesirable components in the fish farm wastewater. The PP/HV membrane has registered a flux of 19.1 kg/m2·h, while the flux of PP/LV membrane was only 7.3 kg/m2·h. The PP/HV membrane also showed excellent anti-scaling properties in relative to the PP/LV membrane. This is because the PP/HV membrane promotes effortless gliding of the feed water along the surface of the membrane, while the surface of the PP/LV membrane has a static water boundary. Therefore, it can be concluded that the application of MD using the membrane coated with high-viscosity PP polymer is a feasible technology for the treatment of aquaculture wastewater.
  7. Chong XY, Vericat D, Batalla RJ, Teo FY, Lee KSP, Gibbins CN
    Sci Total Environ, 2021 Nov 10;794:148686.
    PMID: 34218154 DOI: 10.1016/j.scitotenv.2021.148686
    A major programme of dam building is underway in many of the world's tropical countries. This raises the question of whether existing research is sufficient to fully understand the impacts of dams on tropical river systems. This paper provides a systematic review of what is known about the impacts of dams on river flows, sediment dynamics and geomorphic processes in tropical rivers. The review was conducted using the SCOPUS® and Web of Science® databases, with papers analysed to look for temporal and geographic patterns in published work, assess the approaches used to help understand dam impacts, and assess the nature and magnitude of impacts on the flow regimes and geomorphology ('hydromorphology') of tropical rivers. As part of the review, a meta-analysis was used to compare key impacts across different climate regions. Although research on tropical rivers remains scarce, existing work is sufficient to allow us to draw some very broad, general conclusions about the nature of hydromorphic change: tropical dams have resulted in reductions in flow variability, lower flood peaks, reductions in sediment supply and loads, and complex geomorphic adjustments that include both channel incision and aggradation at different times and downstream distances. At this general level, impacts are consistent with those observed in other climate regions. However, studies are too few and variable in their focus to determine whether some of the more specific aspects of change observed in tropical rivers (e.g. time to reach a new, adjusted state, and downstream recovery distance) differ consistently from those in other regions. The review helps stress the need for research that incorporates before-after comparisons of flow and geomorphic conditions, and for the wider application of tools available now for assessing hydromorphic change. Very few studies have considered hydromorphic processes when designing flow operational policies for tropical dams.
  8. Zhang X, Chan NW, Pan B, Ge X, Yang H
    Sci Total Environ, 2021 Nov 10;794:148388.
    PMID: 34217078 DOI: 10.1016/j.scitotenv.2021.148388
    The SAR has the ability of all-weather and all-time data acquisition, it can penetrate the cloud and is not affected by extreme weather conditions, and the acquired images have better contrast and rich texture information. This paper aims to investigate the use of an object-oriented classification approach for flood information monitoring in floodplains using backscattering coefficients and interferometric coherence of Sentinel-1 data under time series. Firstly, the backscattering characteristics and interference coherence variation characteristics of SAR time series are used to analyze whether the flood disaster information can be accurately reflected and provide the basis for selecting input classification characteristics of subsequent SAR images. Subsequently, the contribution rate index of the RF model is used to calculate the importance of each index in time series to convert the selected large number of classification features into low dimensional feature space to improve the classification accuracy and reduce the data redundancy. Finally, the SAR image features in each period after multi-scale segmentation and feature selection are jointly used as the input features of RF classification to extract and segment the water in the study area to monitor floods' spatial distribution and dynamic characteristics. The results showed that the various attributes of backscatter coefficients and interferometric coherence under time series could accurately correspond with the actual flood risk, and the combined use of backscattering coefficient and interferometric coherence for flood extraction can significantly improve the accuracy of flood information extraction. Overall, the object-based random forest method using the backscattering coefficient and interference coherence of Sentinel-1 time series for flood extraction advances our understanding of flooding's temporal and spatial dynamics, essential for the timely adoption of adaptation and mitigation strategies for loss reduction.
  9. Amid S, Aghbashlo M, Peng W, Hajiahmad A, Najafi B, Ghaziaskar HS, et al.
    Sci Total Environ, 2021 Oct 20;792:148435.
    PMID: 34147796 DOI: 10.1016/j.scitotenv.2021.148435
    A diesel engine running on diesel/biodiesel mixtures containing ethylene glycol diacetate (EGDA) was investigated from the exergoeconomic and exergoenvironmental viewpoints. Biodiesel was mixed with petrodiesel at 5% and 20% volume ratios, and the resultant mixtures were then doped with EGDA at 1-3% volume ratios. The exergetic sustainability indicators of the engine operating on the prepared fuel formulations were determined at varying engine loads. The indicators were selected to support decision-making on fuel composition and engine load following thermodynamic, economic, and environmental considerations. The engine load markedly affected all the studied exergetic parameters. The highest engine exergetic efficiency (39.5%) was obtained for petrodiesel doped with 1 v/v% EGDA at the engine load of 50%. The minimum value of the unit cost of brake power exergy (49.6 US$/GJ) was found for straight petrodiesel at full-load conditions, while the minimum value of the unit environmental impact of brake power exergy (29.9 mPts/GJ) was observed for petrodiesel mixed with 5 v/v% biodiesel at the engine load of 75%. Overall, adding EGDA to fuel mixtures did not favorably influence the outcomes of both exergetic methods due to its energy-intensive and cost-prohibitive production process. In conclusion, although petrodiesel fuel improvers such EGDA used in the present study could properly mitigate pollutant emissions, the adverse effects of such additives on thermodynamic parameters of diesel engines, particularly on exergoeconomic and exergoenvironmental indices, need to be taken into account, and necessary optimizations should be made before their real-world application.
  10. Nguyen DTC, Le HTN, Nguyen TT, Nguyen TTT, Liew RK, Bach LG, et al.
    Sci Total Environ, 2021 Nov 25;797:149195.
    PMID: 34346381 DOI: 10.1016/j.scitotenv.2021.149195
    Asteraceae presents one of the most globally prevalent, cultivated, and fundamental plant families. However, a large amount of agricultural wastes has been yearly released from Asteraceae crops, causing adverse impacts on the environment. The objective of this work is to have insights into their biomass potentials and technical possibility of conversion into biochars. Physicochemical properties are systematically articulated to orientate environmental application, soil amendment, and other utilizations. Utilizations of Asteraceae biochars in wastewater treatment can be categorized by heavy metal ions, organic dyes, antibiotics, persistent organic pollutants (POPs), and explosive compounds. Some efforts were made to analyze the production cost, as well as the challenges and prospects of Asteraceae-based biochars.
  11. Zieritz A, Lopes-Lima M, Bogan AE, Sousa R, Walton S, Rahim KA, et al.
    Sci Total Environ, 2016 Nov 15;571:1069-78.
    PMID: 27473771 DOI: 10.1016/j.scitotenv.2016.07.098
    Freshwater mussels (Bivalvia, Unionida) fulfil important ecosystem functions and are one of the most threatened freshwater taxa globally. Knowledge of freshwater mussel diversity, distribution and ecology in Peninsular Malaysia is extremely poor, and the conservation status of half of the species presumed to occur in the region has yet to be assessed. We conducted the first comprehensive assessment of Peninsular Malaysia's freshwater mussels based on species presence/absence and environmental data collected from 155 sites spanning all major river catchments and diverse habitat types. Through an integrative morphological-molecular approach we recognised nine native and one widespread non-native species, i.e. Sinanodonta woodiana. Two species, i.e. Pilsbryoconcha compressa and Pseudodon cambodjensis, had not been previously recorded from Malaysia, which is likely a result of morphological misidentifications of historical records. Due to their restriction to single river catchments and declining distributions, Hyriopsis bialata, possibly endemic to Peninsular Malaysia, Ensidens ingallsianus, possibly already extinct in the peninsula, and Rectidens sumatrensis, particularly require conservation attention. Equally, the Pahang, the Perak and the north-western river catchments are of particular conservation value due to the presence of a globally unique freshwater mussel fauna. Statistical relationships of 15 water quality parameters and mussel presence/absence identified acidification and nutrient pollution (eutrophication) as the most important anthropogenic factors threatening freshwater mussel diversity in Peninsular Malaysia. These factors can be linked to atmospheric pollution, deforestation, oil-palm plantations and a lack of functioning waste water treatment, and could be mitigated by establishing riparian buffers and improving waste water treatment for rivers running through agricultural and residential land.
  12. Latif MT, Dominick D, Ahamad F, Ahamad NS, Khan MF, Juneng L, et al.
    Sci Total Environ, 2016 Dec 15;573:494-504.
    PMID: 27572541 DOI: 10.1016/j.scitotenv.2016.08.121
    Malaysian Borneo has a lower population density and is an area known for its lush rainforests. However, changes in pollutant profiles are expected due to increasing urbanisation and commercial-industrial activities. This study aims to determine the variation of surface O3concentration recorded at seven selected stations in Malaysian Borneo. Hourly surface O3data covering the period 2002 to 2013, obtained from the Malaysian Department of Environment (DOE), were analysed using statistical methods. The results show that the concentrations of O3recorded in Malaysian Borneo during the study period were below the maximum Malaysian Air Quality Standard of 100ppbv. The hourly average and maximum O3concentrations of 31 and 92ppbv reported at Bintulu (S3) respectively were the highest among the O3concentrations recorded at the sampling stations. Further investigation on O3precursors show that sampling sites located near to local petrochemical industrial activities, such as Bintulu (S3) and Miri (S4), have higher NO2/NO ratios (between 3.21 and 5.67) compared to other stations. The normalised O3values recorded at all stations were higher during the weekend compared to weekdays (unlike its precursors) which suggests the influence of O3titration by NO during weekdays. The results also show that there are distinct seasonal variations in O3across Borneo. High surface O3concentrations were usually observed between August and September at all stations with the exception of station S7 on the east coast. Majority of the stations (except S1 and S6) have recorded increasing averaged maximum concentrations of surface O3over the analysed years. Increasing trends of NO2and decreasing trends of NO influence the yearly averaged maximum of O3especially at S3. This study also shows that variations of meteorological factors such as wind speed and direction, humidity and temperature influence the concentration of surface O3.
  13. Norbäck D, Hashim JH, Hashim Z, Cai GH, Sooria V, Ismail SA, et al.
    Sci Total Environ, 2017 Jan 15;577:148-154.
    PMID: 27802882 DOI: 10.1016/j.scitotenv.2016.10.148
    Few health studies exist on dampness and mould in schools in the tropics. We studied associations between fraction of exhaled nitric oxide (FeNO), respiratory symptoms and airway infections among students and dampness and fungal DNA in schools in Malaysia. A total of 368 randomly selected students from 32 classrooms in 8 secondary schools in Penang, Malaysia, participated (58% participation rate). Information on current respiratory symptoms and the home environment was collected by a standardised questionnaire. FeNO was measured by NIOX MINO (50ml/min). The classrooms were inspected and dust was collected by vacuuming on special filters and was analysed for five fungal DNA sequences by quantitative PCR. Linear mixed models and 3-level multiple logistic regression (school, classroom, student) were applied adjusting for demographic data and the home environment. Totally 10.3% reported doctor's diagnosed asthma, 15.1% current wheeze, 12.4% current asthma, 37.3% daytime breathlessness, 10.2% nocturnal breathlessness, 38.9% airway infections and 15.5% had pollen or furry pet allergy. The geometric mean of FeNO was 19.9ppb and 45% had elevated FeNO (>20ppb). Boys had higher levels of FeNO. Chinese had less daytime breathlessness than Malay (OR=0.30: p<0.001). Indoor carbon dioxide levels were low (380-720ppm). Dampness was observed in 18% of the classrooms and was associated with respiratory infections (OR=3.70; 95% CI 1.14-12.1) and FeNO (p=0.04). Aspergillus versicolor DNA was detected in 67% of the classrooms. Higher numbers of Aspergillus versicolor DNA in classroom dust were associated with wheeze (p=0.006), current asthma (p=0.002), respiratory infections (p=0.005) and elevated FeNO levels (p=0.02). In conclusion, respiratory symptoms were common among the students and the high FeNO levels indicate ongoing airway inflammation. Building dampness and the mould Aspergillus versicolor in schools in Malaysia can be risk factors for impaired respiratory health among the students.
  14. Wan Mohtar WHM, Nawang SAB, Abdul Maulud KN, Benson YA, Azhary WAHWM
    Sci Total Environ, 2017 Nov 15;598:525-537.
    PMID: 28454026 DOI: 10.1016/j.scitotenv.2017.04.093
    This study investigates the textural characteristics of sediments collected at eroded and deposited areas of highly severed eroded coastline of Batu Pahat, Malaysia. Samples were taken from systematically selected 23 locations along the 67km stretch of coastline and are extended to the fluvial sediments of the main river of Batu Pahat. Grain size distribution analysis was conducted to identify its textural characteristics and associated sedimentary transport behaviours. Sediments obtained along the coastline were fine-grained material with averaged mean size of 7.25 ϕ, poorly sorted, positively skewed and has wide distributions. Samples from eroded and deposition regions displayed no distinctive characteristics and exhibited similar profiles. The high energy condition transported the sediments as suspension, mostly as pelagic and the sediments were deposited as shallow marine and agitated deposits. The fluvial sediments of up to 3km into the river have particularly similar profile of textural characteristics with the neighbouring marine sediments from the river mouth. Profiles were similar with marine sediments about 3km opposite the main current and can go up to 10km along the current of Malacca Straits.
  15. Sangok FE, Maie N, Melling L, Watanabe A
    Sci Total Environ, 2017 Jun 01;587-588:381-388.
    PMID: 28242223 DOI: 10.1016/j.scitotenv.2017.02.165
    To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2fluxes from the three soils ranged from 78 to 625mgCm-2h-1with a negative correlation to groundwater level. The CH4fluxes ranged from -67 to 653μgCm-2h-1. Both total CO2and CH4fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1for the MPS soil and 0.066y-1for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.
  16. Shaarani FW, Bou JJ
    Sci Total Environ, 2017 Nov 15;598:931-936.
    PMID: 28458211 DOI: 10.1016/j.scitotenv.2017.04.184
    Although carbon dioxide (CO2) is well known as one of the major green-house gases, it is also an economical C1 resource. Thus, CO2has been regarded as an appealing starting material for the synthesis of polymers, like polycarbonates by the reaction with epoxides. Herein the reaction between natural epoxidized soybean oil (ESO), propylene oxide (PO) and CO2under high pressure (4.0MPa) with the presence of Co-Zn double metal cyanide (Co-Zn DMC) catalyst was studied. Temperature and reaction time were varied accordingly and the products obtained were characterized by FTIR, GPC and1H NMR. The results obtained indicate the formation of polycarbonates in the samples collected with yields vary from 60 to 85%. The number average molecular weight (Mn) of the resultant polymer prepared at reaction temperature of 80°C and reaction time of 6h can reach up to 6498g/mol.
  17. Romero-Güiza MS, Wahid R, Hernández V, Møller H, Fernández B
    Sci Total Environ, 2017 Oct 01;595:651-659.
    PMID: 28402918 DOI: 10.1016/j.scitotenv.2017.04.006
    Lignocellulosic biomasses such as wheat straw are widely used as a feedstock for biogas production. However, these biomasses are mainly composed of a compact fibre structure and therefore, it is recommended to treat them prior to its usage for biogas production in order to improve their bioavailability. The aim of this work is to evaluate, in terms of performance stability, methane yield and economic feasibility, two different scenarios: a mesophilic codigestion of wheat straw and animal manure with or without a low-energy demand alkaline pre-treatment (0.08gKOHgTS-1of wheat straw, for 24h and at 25°C). Besides this, said pre-treatment was also analysed based on the improvement of the bioavailable carbohydrate content in the untreated versus the pre-treated wheat straw. The results pointed out that pre-treated wheat straw prompted a more stable performance (in terms of pH and alkalinity) and an improved methane yield (128% increment) of the mesophilic codigestion process, in comparison to the "untreated" scenario. The pre-treatment increased the content of cellulose, hemicellulose and other compounds (waxes, pectin, oil, etc.) in the liquid fraction, from 5% to 60%, from 11.5% to 39.1% TS and from 57% to 79% of the TS in the liquid fraction for the untreated and pre-treated wheat straws, respectively. Finally, the pre-treated scenario gained an energy surplus of a factor 13.5 and achieved a positive net benefit of 90.4€tVS-WS-1d-1, being a favourable case for an eventual scale-up of the combined process.
  18. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
  19. Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, et al.
    Sci Total Environ, 2018 Sep 01;634:853-867.
    PMID: 29653429 DOI: 10.1016/j.scitotenv.2018.04.055
    The aim of the current study was to produce groundwater spring potential maps using novel ensemble weights-of-evidence (WoE) with logistic regression (LR) and functional tree (FT) models. First, a total of 66 springs were identified by field surveys, out of which 70% of the spring locations were used for training the models and 30% of the spring locations were employed for the validation process. Second, a total of 14 affecting factors including aspect, altitude, slope, plan curvature, profile curvature, stream power index (SPI), topographic wetness index (TWI), sediment transport index (STI), lithology, normalized difference vegetation index (NDVI), land use, soil, distance to roads, and distance to streams was used to analyze the spatial relationship between these affecting factors and spring occurrences. Multicollinearity analysis and feature selection of the correlation attribute evaluation (CAE) method were employed to optimize the affecting factors. Subsequently, the novel ensembles of the WoE, LR, and FT models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) curves, standard error, confidence interval (CI) at 95%, and significance level P were employed to validate and compare the performance of three models. Overall, all three models performed well for groundwater spring potential evaluation. The prediction capability of the FT model, with the highest AUC values, the smallest standard errors, the narrowest CIs, and the smallest P values for the training and validation datasets, is better compared to those of other models. The groundwater spring potential maps can be adopted for the management of water resources and land use by planners and engineers.
  20. Gallardo B, Bogan AE, Harun S, Jainih L, Lopes-Lima M, Pizarro M, et al.
    Sci Total Environ, 2018 Sep 01;635:750-760.
    PMID: 29680765 DOI: 10.1016/j.scitotenv.2018.04.056
    Deforestation, climate change and invasive species constitute three global threats to biodiversity that act synergistically. However, drivers and rates of loss of freshwater biodiversity now and in the future are poorly understood. Here we focus on the potential impacts of global change on freshwater mussels (Order Unionida) in Sundaland (SE Asia), a vulnerable group facing global declines and recognized indicators of overall freshwater biodiversity. We used an ensemble of distribution models to identify habitats potentially suitable for freshwater mussels and their change under a range of climate, deforestation and invasion scenarios. Our data and models revealed that, at present, Sundaland features 47 and 32 Mha of habitat that can be considered environmentally suitable for native and invasive freshwater mussels, respectively. We anticipate that by 2050, the area suitable for palm oil cultivation may expand between 8 and 44 Mha, representing an annual increase of 2-11%. This is expected to result in a 20% decrease in suitable habitat for native mussels, a drop that reaches 30% by 2050 when considering concomitant climate change. In contrast, the habitat potentially suitable for invasive mussels may increase by 44-56% under 2050 future scenarios. Consequently, native mussels may compete for habitat, food resources and fish hosts with invasive mussels across approximately 60% of their suitable range. Our projections can be used to guide future expeditions to monitor the conservation status of freshwater biodiversity, and potentially reveal populations of endemic species on the brink of extinction. Future conservation measures-most importantly the designation of nature reserves-should take into account trends in freshwater biodiversity generally, and particularly species such as freshwater mussels, vital to safeguard fundamental ecosystem services.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links