Displaying publications 121 - 140 of 1113 in total

Abstract:
Sort:
  1. Lee CY, Cheng HM, Sim SM
    Biofactors, 2007;31(1):25-33.
    PMID: 18806306
    The ability of the antioxidants in the mulberry leaves to protect Sprague-Dawley rats from injuries caused by immobilization stress was studied as an indicator of the tissue bioavailability of antioxidants. Nitrite level, lipid peroxidation and total antioxidant activity (TAA) in the plasma and tissues were measured. There were hypertrophy of the adrenal glands and kidneys, significant increased levels of nitrite in the plasma and adrenal glands, elevated thiobarbituric acid reactive substances (TBARS) in the plasma, kidneys and spleen, and a reduction of TAA in the plasma, liver, adrenal glands, kidneys and spleen of the immobilized rats. Antioxidants in the mulberry leaf extract suppressed the increase of nitrite and TBARS. Adrenal glands appeared to be the target organ of the antioxidants in the leaf extract. The low dose mulberry antioxidants were more effective than pure rutin (4 mg/day) to protect the cells against inflammation and peroxidation induced by stress.
    Matched MeSH terms: Plant Leaves/chemistry*
  2. Yong HY, Zou Z, Kok EP, Kwan BH, Chow K, Nasu S, et al.
    Biomed Res Int, 2014;2014:467395.
    PMID: 25177691 DOI: 10.1155/2014/467395
    Amphidiploid species in the Brassicaceae family, such as Brassica napus, are more tolerant to environmental stress than their diploid ancestors.A relatively salt tolerant B. napus line, N119, identified in our previous study, was used. N119 maintained lower Na(+) content, and Na(+)/K(+) and Na(+)/Ca(2+) ratios in the leaves than a susceptible line. The transcriptome profiles of both the leaves and the roots 1 h and 12 h after stress were investigated. De novo assembly of individual transcriptome followed by sequence clustering yielded 161,537 nonredundant sequences. A total of 14,719 transcripts were differentially expressed in either organs at either time points. GO and KO enrichment analyses indicated that the same 49 GO terms and seven KO terms were, respectively, overrepresented in upregulated transcripts in both organs at 1 h after stress. Certain overrepresented GO term of genes upregulated at 1 h after stress in the leaves became overrepresented in genes downregulated at 12 h. A total of 582 transcription factors and 438 transporter genes were differentially regulated in both organs in response to salt shock. The transcriptome depicting gene network in the leaves and the roots regulated by salt shock provides valuable information on salt resistance genes for future application to crop improvement.
    Matched MeSH terms: Plant Leaves/physiology*
  3. Razmavar S, Abdulla MA, Ismail SB, Hassandarvish P
    Biomed Res Int, 2014;2014:521287.
    PMID: 25028658 DOI: 10.1155/2014/521287
    This study was based on screening antibacterial activity of the ethanol extract of Baeckea frutescens L. against MRSA clinical isolates, analyzes the potential antibacterial compound, and assesses the cytotoxicity effect of the extract in tissue culture. Leaves of Baeckea frutescens L. were shade dried, powdered, and extracted using solvent ethanol. Preliminary phytochemical screening of the crude extracts revealed the presence of alkaloids, flavonoids, steroids, terpenoids, phenols, and carbohydrates. The presence of these bioactive constituents is related to the antibacterial activity of the plant. Disc diffusion method revealed a high degree of activity against microorganisms. The results confirm that Baeckea frutescens L. can be used as a source of drugs to fight infections caused by susceptible bacteria.
    Matched MeSH terms: Plant Leaves/chemistry*
  4. Mohd Ghazali MA, Al-Naqeb G, Krishnan Selvarajan K, Hazizul Hasan M, Adam A
    Biomed Res Int, 2014;2014:539607.
    PMID: 24955361 DOI: 10.1155/2014/539607
    Polygonum minus (Polygonaceae) is a medicinal herb distributed throughout eastern Asia. The present study investigated antiproliferative effect of P. minus and its possible mechanisms. Four extracts (petroleum ether, methanol, ethyl acetate, and water) were prepared by cold maceration. Extracts were subjected to phytochemical screening, antioxidant, and antiproliferative assays; the most bioactive was fractionated using vacuum liquid chromatography into seven fractions (F1-F7). Antioxidant activity was measured via total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) assays. Antiproliferative activity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Most active fraction was tested for apoptosis induction and cell cycle arrest in HepG2 cells using flow cytometry and confocal microscopy. Apoptotic-related gene expression was studied by RT-PCR. Ethyl acetate extract was bioactive in initial assays. Its fraction, F7, exhibited highest antioxidant capacity (TPC; 113.16 ± 6.2 mg GAE/g extract, DPPH; EC50: 30.5 ± 3.2 μg/mL, FRAP; 1169 ± 20.3 μmol Fe (II)/mg extract) and selective antiproliferative effect (IC50: 25.75 ± 1.5 μg/mL). F7 induced apoptosis in concentration- and time-dependent manner and caused cell cycle arrest at S-phase. Upregulation of proapoptotic genes (Bax, p53, and caspase-3) and downregulation of antiapoptotic gene, Bcl-2, were observed. In conclusion, F7 was antiproliferative to HepG2 cells by inducing apoptosis, cell cycle arrest, and via antioxidative effects.
    Matched MeSH terms: Plant Leaves/chemistry
  5. Mogana R, Adhikari A, Debnath S, Hazra S, Hazra B, Teng-Jin K, et al.
    Biomed Res Int, 2014;2014:903529.
    PMID: 24949478 DOI: 10.1155/2014/903529
    In continuation of our natural and medicinal research programme on tropical rainforest plants, a bioassay guided fractionation of ethanolic extract of leaves of Canarium patentinervium Miq. (Burseraceae Kunth.) led to the isolation of scopoletin (1), scoparone (2), (+)-catechin (3), vomifoliol (4), lioxin (5), and syringic acid (6). All the compounds exhibited antiacetylcholinesterase activity with syringic acid, a phenolic acid exhibiting good AChE inhibition (IC50 29.53 ± 0.19 μ g/mL). All compounds displayed moderate antileishmanial activity with scopoletin having the highest antileishmanial activity (IC50 163.30 ± 0.32 μ g/mL). Given the aforementioned evidence, it is tempting to speculate that Canarium patentinervium Miq. represents an exciting scaffold from which to develop leads for treatment of neurodegenerative and parasitic diseases.
    Matched MeSH terms: Plant Leaves/chemistry
  6. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Selamat A, Rafii MY, et al.
    Biomed Res Int, 2014;2014:208584.
    PMID: 24579076 DOI: 10.1155/2014/208584
    Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219, and MR232, were tested in pot culture under different salinity regimes for biochemical response, physiological activity, and grain yield. Three different levels of salt stresses, namely, 4, 8, and 12 dS m(-1), were used in a randomized complete block design with four replications under glass house conditions. The results revealed that the chlorophyll content, proline, sugar content, soluble protein, free amino acid, and yield per plant of all the genotypes were influenced by different salinity levels. The chlorophyll content was observed to decrease with salinity level but the proline increased with salinity levels in all varieties. Reducing sugar and total sugar increased up to 8 dS m(-1) and decreased up to 12 dS m(-1). Nonreducing sugar decreased with increasing the salinity levels in all varieties. Soluble protein and free amino acid also decreased with increasing salinity levels. Cortical cells of MR211 and MR232 did not show cell collapse up to 8 dS m(-1) salinity levels compared to susceptible checks (IR20 and BRRI dhan29). Therefore, considering all parameters, MR211 and MR232 showed better salinity tolerance among the tested varieties. Both cluster and principal component analyses depict the similar results.
    Matched MeSH terms: Plant Leaves/metabolism
  7. Rahim NA, Hassandarvish P, Golbabapour S, Ismail S, Tayyab S, Abdulla MA
    Biomed Res Int, 2014;2014:416409.
    PMID: 24783203 DOI: 10.1155/2014/416409
    Herbal medicines appeared promising in prevention of many diseases. This study was conducted to investigate the gastroprotective effect of Curcuma xanthorrhiza leaf in the rats induced gastric ulcer by ethanol. Normal and ulcer control received carboxymethycellulose (5 mL/kg) orally, positive control was administered with 20 mg/kg omeprazole (reference drug) and 2 groups were received 250 mg/kg and 500 mg/kg of the leaf extract, respectively. To induce of gastric ulcers formation, ethanol (5 mL/kg) was given orally to all groups except normal control. Gross ulcer areas, histology, and amount of prostaglandin E2, superoxide dismutase and malondialdehyde were assessed to determine the potentiality of extract in prevention against gastric ulcers. Oral administration of extract showed significant gastric protection effect as the ulcer areas was remarkably decreased. Histology observation showed less edema and leucocytes infiltration as compared with the ulcer control which exhibited severe gastric mucosa injury. Furthermore, the leaf extract elevated the mucus weight, level of prostaglandin E2 and superoxide dismutase. The extract also reduced malondialdehyde amount significantly. Results showed leaf extract of Curcuma xanthorrhiza can enhanced the gastric protection and sustained the integrity of gastric mucosa structure. Acute toxicity test did not showed any sign of toxicity (2 g/kg and 5 g/kg).
    Matched MeSH terms: Plant Leaves/chemistry*
  8. Yong YK, Sulaiman N, Hakim MN, Lian GE, Zakaria ZA, Othman F, et al.
    Biomed Res Int, 2013;2013:463145.
    PMID: 24224164 DOI: 10.1155/2013/463145
    The aim of the present study was to evaluate the anti-inflammatory activities of aqueous extract of Bixa orellana (AEBO) leaves and its possible mechanisms in animal models. The anti-inflammatory activity of the extract was evaluated using serotonin-induced rat paw edema, increased peritoneal vascular permeability, and leukocyte infiltrations in an air-pouch model. Nitric oxide (NO), indicated by the sum of nitrites and nitrates, and vascular growth endothelial growth factor (VEGF) were measured in paw tissues of rats to determine their involvement in the regulation of increased permeability. Pretreatments with AEBO (50 and 150 mg kg⁻¹) prior to serotonin inductions resulted in maximum inhibitions of 56.2% of paw volume, 45.7% of Evans blue dye leakage in the peritoneal vascular permeability model, and 83.9% of leukocyte infiltration in the air-pouch model. 57.2% maximum inhibition of NO and 27% of VEGF formations in rats' paws were observed with AEBO at the dose of 150 mg kg⁻¹. Pharmacological screening of the extract showed significant (P < 0.05) anti-inflammatory activity, indicated by the suppressions of increased vascular permeability and leukocyte infiltration. The inhibitions of these inflammatory events are probably mediated via inhibition of NO and VEGF formation and release.
    Matched MeSH terms: Plant Leaves/chemistry
  9. Yam MF, Lim CP, Fung Ang L, Por LY, Wong ST, Asmawi MZ, et al.
    Biomed Res Int, 2013;2013:351602.
    PMID: 24490155 DOI: 10.1155/2013/351602
    The present study evaluated the antioxidant activity and potential toxicity of 50% methanolic extract of Orthosiphon stamineus (Lamiaceae) leaves (MEOS) after acute and subchronic administration in rats. Superoxide radical scavenging, hydroxyl radical scavenging, and ferrous ion chelating methods were used to evaluate the antioxidant properties of the extract. In acute toxicity study, single dose of MEOS, 5000 mg/kg, was administered to rats by oral gavage, and the treated rats were monitored for 14 days. While in the subchronic toxicity study, MEOS was administered orally, at doses of 1250, 2500, and 5000 mg/kg/day for 28 days. From the results, MEOS showed good superoxide radical scavenging, hydroxyl radical scavenging, ferrous ion chelating, and antilipid peroxidation activities. There was no mortality detected or any signs of toxicity in acute and subchronic toxicity studies. Furthermore, there was no significant difference in bodyweight, relative organ weight, and haematological and biochemical parameters between both male and female treated rats in any doses tested. No abnormality of internal organs was observed between treatment and control groups. The oral lethal dose determined was more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of MEOS for both male and female rats is considered to be 5000 mg/kg per day.
    Matched MeSH terms: Plant Leaves/chemistry
  10. Khorasani Esmaeili A, Mat Taha R, Mohajer S, Banisalam B
    Biomed Res Int, 2015;2015:643285.
    PMID: 26064936 DOI: 10.1155/2015/643285
    In the present study the extracts of in vivo and in vitro grown plants as well as callus tissue of red clover were tested for their antioxidant activities, using different extraction solvent and different antioxidant assays. The total flavonoid and phenolic contents as well as extraction yield of the extracts were also investigated to determine their correlation with the antioxidant activity of the extracts. Among all the tested extracts the highest amounts of total phenolic and total flavonoids content were found in methanol extract of in vivo grown plants. The antioxidant activity of tested samples followed the order in vivo plant extract > callus extract > in vitro extract. The highest reducing power, 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging, and chelating power were found in methanol extracts of in vivo grown red clover, while the chloroform fraction of in vivo grown plants showed the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, superoxide anion radical scavenging and hydrogen peroxide scavenging compared to the other tested extracts. A significant correlation was found between the antioxidant activity of extracts and their total phenolic and total flavonoid content. According to the findings, the extract of in vitro culture of red clover especially the callus tissue possesses a comparable antioxidant activity to the in vivo cultured plants' extract.
    Matched MeSH terms: Plant Leaves/chemistry
  11. Karthivashan G, Arulselvan P, Alimon AR, Safinar Ismail I, Fakurazi S
    Biomed Res Int, 2015;2015:970398.
    PMID: 25793214 DOI: 10.1155/2015/970398
    The influence of Moringa oleifera (MO) leaf extract as a dietary supplement on the growth performance and antioxidant parameters was evaluated on broiler meat and the compounds responsible for the corresponding antioxidant activity were identified. 0.5%, 1.0%, and 1.5% w/v of MO leaf aqueous extracts (MOLE) were prepared, and nutritional feed supplemented with 0%, 0.5%, 1.0%, and 1.5% w/w of MO leaf meal (MOLM) extracts were also prepared and analysed for their in vitro antioxidant potential. Furthermore, the treated broiler groups (control (T1) and treatment (T2, T3, and T4)) were evaluated for performance, meat quality, and antioxidant status. The results of this study revealed that, among the broilers fed MOLM, the broilers fed 0.5% w/w MOLM (T2) exhibited enhanced meat quality and antioxidant status (P < 0.05). However, the antioxidant activity of the MOLE is greater than that of the MOLM. The LC-MS/MS analysis of MOLM showed high expression of isoflavones and fatty acids from soy and corn source, which antagonistically inhibit the expression of the flavonoids/phenols in the MO leaves thereby masking its antioxidant effects. Thus, altering the soy and corn gradients in conventional nutrition feed with 0.5% w/w MO leaves supplement would provide an efficient and cost-effective feed supplement.
    Matched MeSH terms: Plant Leaves/chemistry
  12. Oladosu Y, Rafii MY, Magaji U, Abdullah N, Miah G, Chukwu SC, et al.
    Biomed Res Int, 2018;2018:8936767.
    PMID: 30105259 DOI: 10.1155/2018/8936767
    The associations among yield-related traits and the pattern of influence on rice grain yield were investigated. This evaluation is important to determine the direct and indirect effects of various traits on yield to determine selection criteria for higher grain yield. Fifteen rice genotypes were evaluated under tropical condition at five locations in two planting seasons. The experiment was laid out in a randomized complete block design with three replications across the locations. Data were collected on vegetative and yield components traits. The pooled data based on the analysis of variance revealed that there were significant differences (p < 0.001) among the fifteen genotypes for all the characters studied except for panicle length and 100-grain weight. Highly significant and positive correlations at phenotypic level were observed in grain weight per hill (0.796), filled grains per panicle (0.702), panicles per hill (0.632), and tillers per hill (0.712) with yield per hectare, while moderate positive correlations were observed in flag leaf length to width ratio (0.348), days to flowering (0.412), and days to maturity (0.544). By contrast, unfilled grains per panicle (-0.225) and plant height (-0.342) had a negative significant association with yield per hectare. Filled grains per panicle (0.491) exhibited the maximum positive direct effect on yield followed by grain weight per hill (0.449), while unfilled grain per panicle (-0.144) had a negative direct effect. The maximum indirect effect on yield per hectare was recorded by the tillers per hill through the panicles per hill. Therefore, tillers per hill, filled grains per panicle, and grain weight per hill could be used as selection criteria for improving grain yield in rice.
    Matched MeSH terms: Plant Leaves
  13. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Plant Leaves/growth & development; Plant Leaves/metabolism*; Plant Leaves/microbiology
  14. Nallappan D, Fauzi AN, Krishna BS, Kumar BP, Reddy AVK, Syed T, et al.
    Biomed Res Int, 2021;2021:5125681.
    PMID: 34631882 DOI: 10.1155/2021/5125681
    Studies on green biosynthesis of newly engineered nanoparticles for their prominent medicinal applications are being the torch-bearing concerns of the state-of-the-art research strategies. In this concern, we have engineered the biosynthesized Luffa acutangula silver nanoparticles of flavonoid O-glycosides in the anisotropic form isolated from aqueous leave extracts of Luffa acutangula, a popular traditional and ayurvedic plant in south-east Asian countries. These were structurally confirmed by Ultraviolet-visible (UV-Vis), Fourier transform infrared spectroscopy accessed with attenuated total reflection (FTIR-ATR) spectral analyses followed by the scanning electron microscopic (SEM) and the X-ray diffraction (XRD) crystallographic studies and found them with the face-centered cubic (fcc) structure. Medicinally, we have explored their significant antioxidant (DPPH and ABTS assays), antibacterial (disc diffusion assay on E. coli, S. aureus, B. subtilis, S. fecilis, and S. boydii), and anticancer (MTT assay on MCF-7, MDA-MB-231, U87, and DBTRG cell lines) potentialities which augmented the present investigation. The molecular docking analysis of title compounds against 3NM8 (DPPH) and 1DNU (ABTS) proteins for antioxidant activity; 5FGK (Gram-Positive Bacteria) and 1AB4 (Gram-Negative Bacteria) proteins for antibacterial activity; and 4GBD (MCF-7), 5FI2 (MDA-MB-231), 1D5R (U87), and 5TIJ (DBTRG) proteins for anticancer activity has affirmed the promising ligand-protein binding interactions among the hydroxy groups of the title compounds and aspartic acid of the concerned enzymatic proteins. The binding energy varying from -9.1645 to -7.7955 for Cosmosioside (1, Apigenin-7-glucoside) and from -9.2690 to -7.8306 for Cynaroside (2, Luteolin-7-glucoside) implies the isolated compounds as potential bioactive compounds. In addition, the performed studies like QSAR, ADMET, bioactivity properties, drug scores, and toxicity risks confirmed them as potential drug candidates and aspartic acid receptor antagonists. This research auxiliary augmented the existing array of phytological nanomedicines with new drug candidates that are credible with multiple bioactivities.
    Matched MeSH terms: Plant Leaves/chemistry
  15. Zakaria ZA, Abdul Rahim MH, Roosli RAJ, Mohd Sani MH, Marmaya NH, Omar MH, et al.
    Biomed Res Int, 2019;2019:6593125.
    PMID: 31467905 DOI: 10.1155/2019/6593125
    Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been reported to exert antinociceptive activity. The present study aimed to elucidate the possible antinociceptive mechanisms of a lipid-soluble fraction of MECN, which was obtained after sequential extraction in petroleum ether. The petroleum ether fraction of C. nutans (PECN), administered orally to mice, was (i) subjected to capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged (intraperitoneal (i.p.)) with 0.15 mg/kg yohimbine, 1 mg/kg pindolol, 3 mg/kg caffeine, 0.2 mg/kg haloperidol, or 10 mg/kg atropine, which were the respective antagonist of α 2-adrenergic, β-adrenergic, adenosinergic, dopaminergic, or muscarinic receptors; and (iii) prechallenged (i.p.) with 10 mg/kg glibenclamide, 0.04 mg/kg apamin, 0.02 mg/kg charybdotoxin, or 4 mg/kg tetraethylammonium chloride, which were the respective inhibitor of ATP sensitive-, small conductance Ca2+-activated-, large conductance Ca2+-activated-, or nonselective voltage-activated-K+ channel. Results obtained demonstrated that PECN (100, 250, and 500 mg/kg) significantly (P<0.05) inhibited all models of nociception described earlier. The antinociceptive activity of 500 mg/kg PECN was significantly (P<0.05) attenuated when prechallenged with all antagonists or K+ channel blockers. However, only pretreatment with apamin and charybdotoxin caused full inhibition of PECN-induced antinociception. The rest of the K+ channel blockers and all antagonists caused only partial inhibition of PECN antinociception, respectively. Analyses on PECN's phytoconstituents revealed the presence of antinociceptive-bearing bioactive compounds of volatile (i.e., derivatives of γ-tocopherol, α-tocopherol, and lupeol) and nonvolatile (i.e., cinnamic acid) nature. In conclusion, PECN exerts a non-opioid-mediated antinociceptive activity involving mainly activation of adenosinergic and cholinergic receptors or small- and large-conductance Ca2+-activated-K+ channels.
    Matched MeSH terms: Plant Leaves/chemistry
  16. Albaayit SFA, Maharjan R, Abdullah R, Noor MHM
    Biomed Res Int, 2021;2021:3123476.
    PMID: 33748267 DOI: 10.1155/2021/3123476
    BACKGROUND: Clausena excavata Burum. f. has long been applied in ethnomedicine for the treatment of various disorders like rhinitis, headache, cough, wound healing, fever, and detoxification. This study is aimed at investigating the antibacterial activity against Enterococcus faecalis ATCC 49532 using AlamarBlue assay and atomic force microscopy (AFM) as well as the cytotoxicity, anticancer, and phytotoxicity of C. excavata.

    METHOD: Bacterial cell viability was performed by using microplate AlamarBlue assay. Atomic force microscopy was used to determine morphological changes in the surface of bacterial cells. Cytotoxicity and phytotoxicity were determined by brine shrimp lethality and Lemna minor bioassay. Caco-2 (colorectal adenocarcinoma) cell line was used for the evaluation of the anticancer effects.

    RESULT: Among the fractions tested, ethyl acetate (EA) fraction was found to be active with minimum inhibitory concentration (MIC) of 750 μg/mL against E. faecalis, but other fractions were found to be insensitive to bacterial growth. Microscopically, the EA fraction-treated bacteria showed highly damaged cells with their cytoplasmic content scattered all over. The LC50 value of the EA fraction against brine shrimp was more than 1000 μg/mL showing the nontoxic nature of this fraction. Chloroform (CH), EA, and methanol (MOH) fractions of C. excavata were highly herbicidal at the concentration of 1000 μg/mL. EA inhibited Caco-2 cell line with an IC50 of 20 μg/mL.

    CONCLUSIONS: This study is the first to reveal anti-E. faecalis property of EA fraction of C. excavata leaves, natural herbicidal, and anticancer agents thus highlight the potential compound present in its leaf which needs to be isolated and tested against multidrug-resistant E. faecalis.

    Matched MeSH terms: Plant Leaves/chemistry*
  17. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, et al.
    Biomed Res Int, 2014;2014:695678.
    PMID: 24868543 DOI: 10.1155/2014/695678
    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n=6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P<0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations.
    Matched MeSH terms: Plant Leaves/chemistry
  18. Ramli S, Radu S, Shaari K, Rukayadi Y
    Biomed Res Int, 2017;2017:9024246.
    PMID: 29410966 DOI: 10.1155/2017/9024246
    The aim of this study was to determine antibacterial activity of S. polyanthum L. (salam) leaves extract foodborne pathogens. All the foodborne pathogens were inhibited after treating with extract in disk diffusion test with range 6.67 ± 0.58-9.67 ± 0.58 mm of inhibition zone. The range of MIC values was between 0.63 and 1.25 mg/mL whereas MBC values were in the range 0.63 mg/mL to 2.50 mg/mL. In time-kill curve, L. monocytogenes and P. aeruginosa were found completely killed after exposing to extract in 1 h incubation at 4x MIC. Four hours had been taken to completely kill E. coli, S. aureus, V. cholerae, and V. parahaemolyticus at 4x MIC. However, the population of K. pneumoniae, P. mirabilis, and S. typhimurium only reduced to 3 log CFU/mL. The treated cell showed cell rupture and leakage of the cell cytoplasm in SEM observation. The significant reduction of natural microflora in grapes fruit was started at 0.50% of extract at 5 min and this concentration also was parallel to sensory attributes acceptability where application of extract was accepted by the panellists until 5%. In conclusion, S. polyanthum extract exhibits antimicrobial activities and thus might be developed as natural sanitizer for washing raw food materials.
    Matched MeSH terms: Plant Leaves/chemistry*
  19. Zakaria NI, Ismail MR, Awang Y, Megat Wahab PE, Berahim Z
    Biomed Res Int, 2020;2020:2706937.
    PMID: 32090071 DOI: 10.1155/2020/2706937
    Chilli (Capsicum annum L.) plant is a high economic value vegetable in Malaysia, cultivated in soilless culture containers. In soilless culture, the adoption of small container sizes to optimize the volume of the growing substrate could potentially reduce the production cost, but will lead to a reduction of plant growth and yield. By understanding the physiological mechanism of the growth reduction, several potential measures could be adopted to improve yield under restricted root conditions. The mechanism of growth reduction of plants subjected to root restriction remains unclear. This study was conducted to determine the physiological mechanism of growth reduction of root-restricted chilli plants grown in polyvinyl-chloride (PVC) column of two different volumes, 2392 cm3(root-restricted) and 9570 cm3(control) in soilless culture. Root restriction affected plant growth, physiological process, and yield of chilli plants. Root restriction reduced the photosynthesis rate and photochemical activity of PSII, and increased relative chlorophyll content. Limited root growth in root restriction caused an accumulation of high levels of sucrose in the stem and suggested a transition of the stem as a major sink organ for photoassimilate. Growth reduction in root restriction was not related to limited carbohydrate production, but due to the low sink demand from the roots. Reduction of the total yield per plant about, 23% in root restriction was concomitant, with a slightly increased harvest index which reflected an increased photoassimilate partitioning to the fruit production and suggested more efficient fruits production in the given small plant size of root restriction.
    Matched MeSH terms: Plant Leaves/anatomy & histology
  20. Schilthuizen M, Berenyi AEA, Limin A, Brahim A, Cicuzza D, Eales AJ, et al.
    PMID: 30740026 DOI: 10.3897/BDJ.7.e32555
    Background: Clavicornaltica is a genus of very small flea beetles living in the leaf litter layer of Asian forests, easily sampled with Winkler extraction. The genus is presumably very rich in species, but their taxonomy is hampered by their small size and morphological uniformity.

    New information: On a 'taxon expedition'-style field course at Kuala Belalong Field Studies Centre in Brunei Darussalam (Borneo), a new species, Clavicornaltica belalongensis n. sp., was discovered and taxonomically treated by the course participants. We also present the first DNA barcodes for the genus.

    Matched MeSH terms: Plant Leaves
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links