Displaying publications 141 - 160 of 292 in total

Abstract:
Sort:
  1. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(11):969.
    PMID: 31886778 DOI: 10.1140/epjc/s10052-019-7451-7
    Measurements are presented of the triple-differential cross section for inclusive isolated-photon+jet events in

    p
    p

    collisions at


    s

    =
    8

    TeV as a function of photon transverse momentum (

    p

    T


    γ




    ), photon pseudorapidity (

    η

    γ




    ), and jet pseudorapidity (

    η
    jet

    ). The data correspond to an integrated luminosity of

    19.7



    fb

    -
    1




    that probe a broad range of the available phase space, for


    |


    η

    γ





    |
    <
    1.44


    and


    1.57
    <
    |


    η

    γ





    |
    <
    2.50


    ,


    |


    η
    jet


    |
    <
    2.5


    ,

    40
    <

    p

    T


    γ




    <
    1000




    GeV

    , and jet transverse momentum,

    p

    T

    jet

    , > 25


    GeV

    . The measurements are compared to next-to-leading order perturbative quantum chromodynamics calculations, which reproduce the data within uncertainties.
  2. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
  3. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2020 May 22;124(20):202001.
    PMID: 32501048 DOI: 10.1103/PhysRevLett.124.202001
    A measurement is reported of the jet mass distribution in hadronic decays of boosted top quarks produced in pp collisions at sqrt[s]=13  TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 35.9  fb^{-1}. The measurement is performed in the lepton+jets channel of tt[over ¯] events, where the lepton is an electron or muon. The products of the hadronic top quark decay t→bW→bqq[over ¯]^{'} are reconstructed as a single jet with transverse momentum larger than 400 GeV. The tt[over ¯] cross section as a function of the jet mass is unfolded at the particle level and used to extract a value of the top quark mass of 172.6±2.5  GeV. A novel jet reconstruction technique is used for the first time at the LHC, which improves the precision by a factor of 3 relative to an earlier measurement. This highlights the potential of measurements using boosted top quarks, where the new technique will enable future precision measurements.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Apr 24;124(16):162002.
    PMID: 32383915 DOI: 10.1103/PhysRevLett.124.162002
    The polarizations of promptly produced χ_{c1} and χ_{c2} mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at sqrt[s]=8  TeV. The χ_{c} states are reconstructed via their radiative decays χ_{c}→J/ψγ, with the photons being measured through conversions to e^{+}e^{-}, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_{c2} to χ_{c1} yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ→μ^{+}μ^{-} decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):313.
    PMID: 31031568 DOI: 10.1140/epjc/s10052-019-6788-2
    A top quark mass measurement is performed using 35.9 fb - 1 of LHC proton-proton collision data collected with the CMS detector at s = 13 TeV . The measurement uses the t t ¯ all-jets final state. A kinematic fit is performed to reconstruct the decay of the t t ¯  system and suppress the multijet background. Using the ideogram method, the top quark mass ( m t ) is determined, simultaneously constraining an additional jet energy scale factor ( JSF ). The resulting value of m t = 172.34 ± 0.20 (stat+JSF) ± 0.70 (syst) GeV is in good agreement with previous measurements. In addition, a combined measurement that uses the t t ¯ lepton+jets and all-jets final states is presented, using the same mass extraction method, and provides an m t measurement of 172.26 ± 0.07 (stat+JSF) ± 0.61 (syst) GeV . This is the first combined m t extraction from the lepton+jets and all-jets channels through a single likelihood function.
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2019;79(11):893.
    PMID: 31886779 DOI: 10.1140/epjc/s10052-019-7402-3
    The average total energy as well as its hadronic and electromagnetic components are measured with the CMS detector at pseudorapidities - 6.6 < η < - 5.2 in proton-proton collisions at a centre-of-mass energy s = 13 TeV . The results are presented as a function of the charged particle multiplicity in the region | η | < 2 . This measurement is sensitive to correlations induced by the underlying event structure over a very wide pseudorapidity region. The predictions of Monte Carlo event generators commonly used in collider experiments and ultra-high energy cosmic ray physics are compared to the data. All generators considered overestimate the fraction of energy going into hadrons.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(11):939.
    PMID: 30881211 DOI: 10.1140/epjc/s10052-018-6390-z
    Measurements of B s 2 ∗ ( 5840 ) 0 and B s 1 ( 5830 ) 0 mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of , collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV . The analysis studies P-wave B s 0 meson decays into B ( ∗ ) + K - and B ( ∗ ) 0 K S 0 , where the B + and B 0 mesons are identified using the decays B + → J / ψ K + and B 0 → J / ψ K ∗ ( 892 ) 0 . The masses of the P-wave B s 0 meson states are measured and the natural width of the B s 2 ∗ ( 5840 ) 0 state is determined. The first measurement of the mass difference between the charged and neutral B ∗ mesons is also presented. The B s 2 ∗ ( 5840 ) 0 decay to B 0 K S 0 is observed, together with a measurement of its branching fraction relative to the B s 2 ∗ ( 5840 ) 0 → B + K - decay.
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(8):702.
    PMID: 31524889 DOI: 10.1140/epjc/s10052-019-7202-9
    Exclusive ρ 770 0 photoproduction is measured for the first time in ultraperipheral pPb collisions at s NN = 5.02 Te with the CMS detector. The cross section σ ( γ p → ρ 770 0 p ) is 11.0 ± 1.4 (stat) ± 1.0 (syst) μ b at ⟨ W γ p ⟩ = 92.6 Ge for photon-proton centre-of-mass energies W γ p between 29 and 213 Ge . The differential cross section d σ / d | t | is measured in the interval 0.025 < | t | < 1 Ge 2 as a function of W γ p , where t is the squared four-momentum transfer at the proton vertex. The results are compared with previous measurements and theoretical predictions. The measured cross section σ ( γ p → ρ 770 0 p ) has a power-law dependence on the photon-proton centre-of-mass, consistent with electron-proton collision measurements performed at HERA. The W γ p dependence of the exponential slope of the differential cross section d σ / d | t | is also measured.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):94.
    PMID: 30872972 DOI: 10.1140/epjc/s10052-019-6562-5
    A search is presented for decays of Z and Higgs bosons to a J / ψ meson and a photon, with the subsequent decay of the J / ψ to μ + μ - . The analysis uses data from proton-proton collisions with an integrated luminosity of 35.9 fb - 1 at s = 13 TeV collected with the CMS detector at the LHC. The observed limit on the Z → J / ψ γ decay branching fraction, assuming that the J / ψ meson is produced unpolarized, is 1.4 × 10 - 6 at 95% confidence level, which corresponds to a rate higher than expected in the standard model by a factor of 15. For extreme-polarization scenarios, the observed limit changes from - 13.6 to + 8.6 % with respect to the unpolarized scenario. The observed upper limit on the branching fraction for H → J / ψ γ where the J / ψ meson is assumed to be transversely polarized is 7.6 × 10 - 4 , a factor of 260 larger than the standard model prediction. The results for the Higgs boson are combined with previous data from proton-proton collisions at s = 8 TeV to produce an observed upper limit on the branching fraction for H → J / ψ γ that is a factor of 220 larger than the standard model value.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):123.
    PMID: 30863200 DOI: 10.1140/epjc/s10052-019-6620-z
    Measurements of normalized differential cross sections as functions of the multiplicity and kinematic variables of charged-particle tracks from the underlying event in top quark and antiquark pair production are presented. The measurements are performed in proton-proton collisions at a center-of-mass energy of 13 Te , and are based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.9 fb - 1 . Events containing one electron, one muon, and two jets from the hadronization and fragmentation of b quarks are used. These measurements characterize, for the first time, properties of the underlying event in top quark pair production and show no deviation from the universality hypothesis at energy scales typically above twice the top quark mass.
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):697.
    PMID: 30839770 DOI: 10.1140/epjc/s10052-018-6144-y
    Pseudorapidity, transverse momentum, and multiplicity distributions are measured in the pseudorapidity range | η | < 2.4 for charged particles with transverse momenta satisfying p T > 0.5 GeV in proton-proton collisions at a center-of-mass energy of s = 13 TeV . Measurements are presented in three different event categories. The most inclusive of the categories corresponds to an inelastic p p data set, while the other two categories are exclusive subsets of the inelastic sample that are either enhanced or depleted in single diffractive dissociation events. The measurements are compared to predictions from Monte Carlo event generators used to describe high-energy hadronic interactions in collider and cosmic-ray physics.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(9):701.
    PMID: 30839773 DOI: 10.1140/epjc/s10052-018-6148-7
    A measurement is presented of the effective leptonic weak mixing angle ( sin 2 θ eff ℓ ) using the forward-backward asymmetry of Drell-Yan lepton pairs ( μ μ and e e ) produced in proton-proton collisions at s = 8 TeV at the CMS experiment of the LHC. The data correspond to integrated luminosities of 18.8 and 19.6 fb - 1 in the dimuon and dielectron channels, respectively, containing 8.2 million dimuon and 4.9 million dielectron events. With more events and new analysis techniques, including constraints obtained on the parton distribution functions from the measured forward-backward asymmetry, the statistical and systematic uncertainties are significantly reduced relative to previous CMS measurements. The extracted value of sin 2 θ eff ℓ from the combined dilepton data is sin 2 θ eff ℓ = 0.23101 ± 0.00036 (stat) ± 0.00018 (syst) ± 0.00016 (theo) ± 0.00031 (parton distributions in proton) = 0.23101 ± 0.00053 .
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):305.
    PMID: 31007588 DOI: 10.1140/epjc/s10052-019-6800-x
    A search is presented for resonant production of second-generation sleptons ( μ ~ L , ν ~ μ ) via the R-parity-violating coupling λ 211 ' to quarks, in events with two same-sign muons and at least two jets in the final state. The smuon (muon sneutrino) is expected to decay into a muon and a neutralino (chargino), which will then decay into a second muon and at least two jets. The analysis is based on the 2016 data set of proton-proton collisions at s = 13 TeV recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 35.9 fb - 1 . No significant deviation is observed with respect to standard model expectations. Upper limits on cross sections, ranging from 0.24 to 730 fb , are derived in the context of two simplified models representing the dominant signal contributions leading to a same-sign muon pair. The cross section limits are translated into coupling limits for a modified constrained minimal supersymmetric model with λ 211 ' as the only nonzero R-parity violating coupling. The results significantly extend restrictions of the parameter space compared with previous searches for similar models.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(3):280.
    PMID: 31007587 DOI: 10.1140/epjc/s10052-019-6730-7
    A search for dark matter produced in association with a Higgs boson decaying to a pair of bottom quarks is performed in proton-proton collisions at a center-of-mass energy of 13 Te collected with the CMS detector at the LHC. The analyzed data sample corresponds to an integrated luminosity of 35.9 fb - 1 . The signal is characterized by a large missing transverse momentum recoiling against a bottom quark-antiquark system that has a large Lorentz boost. The number of events observed in the data is consistent with the standard model background prediction. Results are interpreted in terms of limits both on parameters of the type-2 two-Higgs doublet model extended by an additional light pseudoscalar boson a (2HDM+ a ) and on parameters of a baryonic Z ' simplified model. The 2HDM+ a model is tested experimentally for the first time. For the baryonic Z ' model, the presented results constitute the most stringent constraints to date.
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(3):269.
    PMID: 30971865 DOI: 10.1140/epjc/s10052-019-6752-1
    Measurements are presented of associated production of a W boson and a charm quark ( W + c ) in proton-proton collisions at a center-of-mass energy of 13 Te . The data correspond to an integrated luminosity of 35.7 fb - 1 collected by the CMS experiment at the CERN LHC. The W bosons are identified by their decay into a muon and a neutrino. The charm quarks are tagged via the full reconstruction of D ∗ ( 2010 ) ± mesons that decay via D ∗ ( 2010 ) ± → D 0 + π ± → K ∓ + π ± + π ± . A cross section is measured in the fiducial region defined by the muon transverse momentum p T μ > 26 Ge , muon pseudorapidity | η μ | < 2.4 , and charm quark transverse momentum p T c > 5 Ge . The inclusive cross section for this kinematic range is σ ( W + c ) = 1026 ± 31 (stat) + 76 - 72 (syst) pb . The cross section is also measured differentially as a function of the pseudorapidity of the muon from the W boson decay. These measurements are compared with theoretical predictions and are used to probe the strange quark content of the proton.
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(1):20.
    PMID: 30872964 DOI: 10.1140/epjc/s10052-018-6482-9
    Measurements of inclusive isolated-photon and photon+jet production in proton-proton collisions at s = 13 TeV are presented. The analysis uses data collected by the CMS experiment in 2015, corresponding to an integrated luminosity of 2.26 fb - 1 . The cross section for inclusive isolated photon production is measured as a function of the photon transverse energy in a fiducial region. The cross section for photon+jet production is measured as a function of the photon transverse energy in the same fiducial region with identical photon requirements and with the highest transverse momentum jet. All measurements are in agreement with predictions from next-to-leading-order perturbative QCD.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2020;80(3):237.
    PMID: 32215380 DOI: 10.1140/epjc/s10052-020-7773-5
    A search in an all-jet final state for new massive resonances decaying to W W , W Z , or Z Z boson pairs using a novel analysis method is presented. The analysis is performed on data corresponding to an integrated luminosity of 77.3 fb - 1 recorded with the CMS experiment at the LHC at a centre-of-mass energy of 13  Te . The search is focussed on potential narrow-width resonances with masses above 1.2  Te , where the decay products of each W or Z boson are expected to be collimated into a single, large-radius jet. The signal is extracted using a three-dimensional maximum likelihood fit of the two jet masses and the dijet invariant mass, yielding an improvement in sensitivity of up to 30% relative to previous search methods. No excess is observed above the estimated standard model background. In a heavy vector triplet model, spin-1 Z ' and W ' resonances with masses below 3.5 and 3.8   Te , respectively, are excluded at 95% confidence level. In a bulk graviton model, upper limits on cross sections are set between 27 and 0.2 fb for resonance masses between 1.2 and 5.2   Te , respectively. The limits presented in this paper are the best to date in the dijet final state.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    PMID: 31976986 DOI: 10.1140/epjc/s10052-019-7499-4
    New sets of CMS underlying-event parameters ("tunes") are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell-Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2020;80(12):1164.
    PMID: 33362286 DOI: 10.1140/epjc/s10052-020-08562-y
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes p p → p X and p p → X p , i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at s = 8 Te during a dedicated run with β ∗ = 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb - 1 . The single-diffractive dijet cross section σ jj p X , in the kinematic region ξ < 0.1 , 0.03 < | t | < 1 Ge 2 , with at least two jets with transverse momentum p T > 40 Ge , and pseudorapidity | η | < 4.4 , is 21.7 ± 0.9 (stat) - 3.3 + 3.0 (syst) ± 0.9 (lumi) nb . The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ , is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10 x ≤ - 1.6 , is R = ( σ jj p X / Δ ξ ) / σ jj = 0.025 ± 0.001 (stat) ± 0.003 (syst) , where σ jj p X and σ jj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2022 Jan 21;128(3):032001.
    PMID: 35119878 DOI: 10.1103/PhysRevLett.128.032001
    The first evidence for X(3872) production in relativistic heavy ion collisions is reported. The X(3872) production is studied in lead-lead (Pb-Pb) collisions at a center-of-mass energy of sqrt[s_{NN}]=5.02  TeV per nucleon pair, using the decay chain X(3872)→J/ψπ^{+}π^{-}→μ^{+}μ^{-}π^{+}π^{-}. The data were recorded with the CMS detector in 2018 and correspond to an integrated luminosity of 1.7  nb^{-1}. The measurement is performed in the rapidity and transverse momentum ranges |y|<1.6 and 15
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links