Displaying publications 141 - 160 of 997 in total

Abstract:
Sort:
  1. Khairil M, Burslem DFRP
    Tree Physiol, 2018 11 01;38(11):1752-1760.
    PMID: 30137635 DOI: 10.1093/treephys/tpy082
    Aluminium (Al) accumulation is a common trait expressed in at least 60 plant families and particularly prevalent in tropical woody plants. However, the functional significance and genetic or physiological controls on Al accumulation are currently unknown. We tested the hypothesis that differential expression of Al accumulation among wild populations of the Al-accumulating tropical shrub Melastoma malabathricum L. is associated with habitat-related variation in total and exchangeable soil Al concentrations. Mature leaves and seeds were sampled from 20 populations of M. malabathricum growing in six habitats across Peninsular Malaysia, and soil was collected from each site. The seeds were grown in hydroponic solutions comprising 50% Hoagland's solution amended with Al in the form of 1.0 mM AlCl3 to test the hypothesis that differential expression of foliar Al accumulation is an inherited trait. Foliar Al concentrations varied significantly among populations, but were not consistently different among plants growing in different habitats and showed no relationship to total or exchangeable Al concentrations in soils collected at the 20 sites. Mean foliar Al concentration in wild plants was positively correlated with foliar calcium (Ca) concentrations, and with total soil nitrogen (N), Ca and magnesium (Mg) concentrations, across the 20 populations, and Al addition increased foliar concentrations of phosphorus, Ca, Mg and potassium in seedlings. The differential expression of Al accumulation in M. malabathricum populations is uncoupled to local variation in soil Al concentrations, but may be sensitive to local soil-related variation in the availability of other macro-nutrients, in particular N, Ca and Mg. Further research on the factors controlling Al uptake should focus on the plasticity of this trait within populations of Al accumulators and interactions with micro-habitat variation in the availability of the macronutrient cations.
    Matched MeSH terms: Ecosystem
  2. Brändle J, Kunert N
    Tree Physiol, 2019 12 01;39(12):1975-1983.
    PMID: 31631217 DOI: 10.1093/treephys/tpz104
    Tree autotrophic respiratory processes, especially stem respiration or stem CO2 efflux (Estem), are important components of the forest carbon budget. Despite efforts to investigate the controlling processes of Estem in recent years, a considerable lack in our knowledge remains on the abiotic and biotic drivers affecting Estem dynamics. It has been strongly advocated that long-term measurements would shed light onto those processes. The expensive scientific instruments needed to measure gas exchange have prevented Estem measurements from being applied on a larger temporal and spatial scale. Here, we present an automated closed dynamic chamber system based on inexpensive and industrially broadly applied CO2 sensors, reducing the costs for the sensing system to a minimum. The CO2 sensor was cross-calibrated with a commonly used gas exchange system in the laboratory and in the field, and we found very good accordance of these sensors. We tested the system under harsh tropical climatic conditions, characterized by heavy tropical rainfall events, extreme humidity and temperatures, in a moist lowland forest in Malaysia. We recorded Estem of three Dyera costulata (Miq.) trees with our prototype over various days. The variation of Estem was large among the three tree individuals and varied by 7.5-fold. However, clear diurnal changes in Estem were present in all three tree individuals. One tree showed high diurnal variation in Estem, and the relationship between Estem and temperature was characterized by a strong hysteresis. The large variations found within one single tree species highlight the importance of continuous measurement to quantify ecosystem carbon fluxes.
    Matched MeSH terms: Ecosystem*
  3. Takanashi S, Kosugi Y, Matsuo N, Tani M, Ohte N
    Tree Physiol, 2006 Dec;26(12):1565-78.
    PMID: 17169896
    Effects of heterogeneity in stomatal behavior on gas-exchange characteristics of leaves from four tree species growing in different climates, including temperate, tropical monsoon and tropical rain forest, were investigated by combining gas-exchange measurements and the pressure-infiltration method. Field observations indicated linear relationships between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area (open stomata area) in Dipterocarpus sublamellatus Foxw. and Neobalanocarpus heimii (King) Ashton in a tropical rain forest in Peninsular Malaysia, whereas the ratio of infiltrated to non-infiltrated area rapidly increased up to the whole-leaf conductance at which the entire leaf was infiltrated in Cinnamomum camphora Sieb. in a temperate evergreen forest in Japan and in Azadirachta indica Juss. in a tropical monsoon area in Thailand. These results strongly suggest small ranges in bell-shaped stomatal conductance distributions in C. camphora and A. indica and bimodal stomatal conductance distributions in D. sublamellatus and N. heimii. The values of normalized maximum carboxylation rate at 25 degrees C (V(cmax25)) derived from gas-exchange measurements were not constant, but decreased with decreasing whole-leaf conductance in D. sublamellatus and N. heimii. A gas-exchange model analysis revealed a linear relationship between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area for bimodal stomatal conductance distributions, whereas for bell-shaped distributions, the relationships were nonlinear. Midday depression of apparent V(cmax25) in these species was mainly caused by bimodal stomatal closure. The bimodal stomatal distribution model could also explain diurnal changes in photosynthetic assimilation and transpiration rates in these species.
    Matched MeSH terms: Ecosystem*
  4. Che Dom N, Faiz Madzlan M, Nadira Yusoff SN, Hassan Ahmad A, Ismail R, Nazrina Camalxaman S
    Trans R Soc Trop Med Hyg, 2016 Apr;110(4):237-45.
    PMID: 27076510 DOI: 10.1093/trstmh/trw015
    Dengue fever (DF) is an urban vector-borne disease transmitted by Aedes aegypti and Aedes albopictus. Both species deposit their eggs in favorable breeding sites either in natural or artificial containers. An understanding of their habitat characteristics is crucial in curbing DF outbreaks
    Matched MeSH terms: Ecosystem
  5. Uddin MK, Juraimi AS
    ScientificWorldJournal, 2013;2013:409413.
    PMID: 24222734 DOI: 10.1155/2013/409413
    Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses.
    Matched MeSH terms: Ecosystem
  6. Valdiani A, Abdul Kadir M, Said Saad M, Talei D, Omidvar V, Hua CS
    ScientificWorldJournal, 2012;2012:297545.
    PMID: 22701352 DOI: 10.1100/2012/297545
    The ambiguity of crossability in Andrographis paniculata (AP) was pointed out in the present research. Accordingly, the effects of different style length and crossing time on intraspecific crossability of seven AP accessions in 21 possible combinations were investigated. The best results came out between 08:00 to 11:00 h for manual out-crossing of AP, while the time from 12:00 to 18:00 h showed a decreasing trend. Moreover, 12 mm style length was found as the most proper phenological stage in terms of stigmatic receptivity to perform out-crossing in this plant. All in all, AP behaved unlikely in each combination, and a significant difference was observed in crossability of AP accessions (P < 0.01). The lowest and highest crossability rate was found in hybrids 21 (11261NS × 11344K) and 27 (11322PA × 11350T) with 0.25% and 13.33%, respectively. Furthermore, a significant negative relationship between style length and crossibility (r² = 0.762(∗∗)) was recorded in this research. As a final conclusion, crossing time and proper style length can improve the intraspecific crossability in the species, considerably. Despite all the mentioned contrivances, we still believe that a genetic incongruity should be involved as an additional obstacle in crossability of those combinations that failed or responded deficiently to outcrossing.
    Matched MeSH terms: Ecosystem*
  7. Ashraf MA, Maah MJ, Yusoff I
    ScientificWorldJournal, 2012;2012:125608.
    PMID: 22566758 DOI: 10.1100/2012/125608
    This study describes the chemical speciation of Pb, Zn, Cu, Cr, As, and Sn in soil of former tin mining catchment. Total five sites were selected for sampling and subsequent subsamples were collected from each site in order to create a composite sample for analysis. Samples were analysed by the sequential extraction procedure using optical emission spectrometry (ICP OES). Small amounts of Cu, Cr, and As retrieved from the exchangeable phase, the ready available for biogeochemical cycles in the ecosystem. Low quantities of Cu and As could be taken up by plants in these kind of acidic soils. Zn not detected in the bioavailable forms while Pb is only present in negligible amounts in very few samples. The absence of mobile forms of Pb eliminates the toxic risk both in the trophic chain and its migration downwards the soil profile. The results also indicate that most of the metals have high abundance in residual fraction indicating lithogenic origin and low bioavailability of the metals in the studied soil. The average potential mobility for the metals giving the following order: Sn > Cu > Zn > Pb > Cr > As.
    Matched MeSH terms: Ecosystem
  8. Gikonyo EW, Zaharah AR, Hanafi MM, Anuar RA
    ScientificWorldJournal, 2010 Sep 01;10:1679-93.
    PMID: 20842313 DOI: 10.1100/tsw.2010.174
    The effectiveness of different soil tests in assessing soil phosphorus (P) in soils amended with phosphate rocks (PRs) is uncertain. We evaluated the effects of triple superphosphate (TSP) and PRs on extractable P by conventional soil tests (Mehlich 3 [Meh3] and Bray-1 [B1]) and a nonconventional test (iron oxide-impregnated paper, strip). Extracted amounts of P were in the order: Meh3 >B1 > strip. All the tests were significantly correlated (p = 0.001). Acidic reagents extracted more P from TSP than PRs, while the strip removed equal amounts from the two sources. The P removed by the three tests was related significantly to dry matter yield (DMY), but only in the first harvest, except for B1. Established critical P levels (CPLs) differed for TSP and PRs. In PR-fertilized soils, CPLs were 27, 17, and 12 mg P kg(-1) soil for Meh3, B1, and strip, respectively, and 42, 31, and 12 mg P kg(-1) soil, respectively, in TSP-fertilized soils. Thus, the strip resulted in a common CPL for TSP and PRs (12 mg P kg(-1) soil). This method can be used effectively in soils where integrated nutrient sources have been used, but there is need to establish CPLs for different crops. For cost-effective fertilizer P recommendations based on conventional soil tests, there is a need to conduct separate calibrations for TSP- and PR-fertilized soils.
    Matched MeSH terms: Ecosystem
  9. Haruna Ahmed O, Aainaa Hasbullah N, Ab Majid NM
    ScientificWorldJournal, 2010 Oct 12;10:1988-95.
    PMID: 20953548 DOI: 10.1100/tsw.2010.196
    The world's tropical rainforests are decreasing at an alarming rate as they are converted to agricultural land, pasture, and plantations. Decreasing tropical forests affect global warming. As a result, afforestation progams have been suggested to mitigate this problem. The objective of this study was to determine the carbon and phosphorus accumulation of a rehabilitated forest of different ages. The size of the study area was 47.5 ha. Soil samples were collected from the 0-, 6-, 12-, and 17-year-old rehabilitated forest. Twenty samples were taken randomly with a soil auger at depths of 0-20 and 20-40 cm. The procedures outlined in the Materials and Methods section were used to analyze the soil samples for pH, total C, organic matter, total P, C/P ratio, yield of humic acid (HA), and cation exchange capacity (CEC). The soil pH decreased significantly with increasing age of forest rehabilitation regardless of depth. Age did not affect CEC of the rehabilitated forest. Soil organic matter (SOM), total C, and total P contents increased with age. However, C/P ratio decreased with time at 0-20 cm. Accumulation of HA with time and soil depth was not consistent. The rehabilitated forest has shown signs of being a C and P sink.
    Matched MeSH terms: Ecosystem
  10. Mohd MH, Rahman MAA, Nazri MN, Tan CH, Mohamad Y, Lim CS, et al.
    ScientificWorldJournal, 2020;2020:4695894.
    PMID: 33223970 DOI: 10.1155/2020/4695894
    Decommissioning of the offshore platform as an artificial reef, known as Rigs-to-Reefs (R2R), has become a sustainable approach for oil companies. The platform was reused to serve the underwater ecosystem as an artificial reef for a new marine ecosystem which helps to tackle food security issue. This paper presents the findings of the formulation of the reefing viability index to recognize an offshore region that can be used for R2R projects within the South China Sea. The combined effects of spatial data, numerical modelling, and geographic system (GIS) are proposed to study the relationship of spawning ground coral reefs, diversity, and planula larvae in the process of colonization to establish a map of the reef potential environment. Coral connectivity and spawning behaviour were studied to determine the possible source of coral seedling released during the spawning season, twice a year. A geographic reef viability index was established consisting of seven parameters which are coral larval density, pelagic larval length, sea currents, temperature, chlorophyll-a, depth, and substrate availability. The ocean hydrodynamic model was designed to resemble the pattern of larval scattering. By using the simulations and rankings, there were 95 (21%) sites which could probably be used for in situ reefing, whereas 358 (79%) sites were likely ideal for ex situ reefing. Validation of the viability index was carried out using media footage assessment of remotely operated vehicle (ROV).
    Matched MeSH terms: Ecosystem*
  11. Hassan R, Lee SY, Morni WZW
    ScientificWorldJournal, 2017;2017:1489360.
    PMID: 28695188 DOI: 10.1155/2017/1489360
    Sea star (class Asteroidea, phylum Echinodermata) is one of the most successful marine organisms inhabiting a wide range of habitats. As one of the key stone species, sea stars are responsible for maintaining much of the local diversity of species within certain communities. Malaysian Exclusive Economic Zone (EEZ) Resource Survey had been carried out from 16th Aug to 6th Nov 2015 and one of the invertebrate by-catch organisms is sea star Stellaster childreni Gray, 1840. This study documents morphological characters and diet of the sea star, besides providing brief descriptions of the habitats based on particle size analysis and vessel log data sheet. A total of 217 individuals had been examined throughout this study. Fragments of flora and fauna were found in the gut including Mollusca (gastropod, bivalves, and scaphopods), sponge seagrass, and seaweed as well as benthic Foraminifera. Stellaster childreni were found at depth of 45 m to 185 m in the South China Sea off Sarawak Malaysia, with various sea bottom substrata. Approximately 41% of S. childreni were found at a mixture of sandy and muddy substratum, followed by mixture of sandy and coral (19.3%), muddy substratum (17.5%), coral substratum (11.5%), and sandy areas (10.6%). The widely distributed sea star on different types of sea beds suggested healthy deep sea ecosystem; thus Malaysia should explore further potential fisheries resources in the EEZ off Sarawak coast.
    Matched MeSH terms: Ecosystem*
  12. Rohani A, Wan Najdah WM, Zamree I, Azahari AH, Mohd Noor I, Rahimi H, et al.
    PMID: 21073056
    In Peninsular Malaysia, a large proportion of malaria cases occur in the central mountainous and forested parts of the country. As part of a study to assess remote sensing data as a tool for vector mapping, we conducted entomological surveys to determine the type of mosquitoes, their characteristics and the abundance of habitats of the vector Anopheles maculatus in malaria endemic areas in Pos Senderot. An. maculatus mosquitoes were collected from 49 breeding sites in Pos Senderot. An. maculatus preferred to breed in water pockets formed on the bank of rivers and waterfalls. The most common larval habitats were shallow pools 5.0-15.0 cm deep with clear water, mud substrate and plants or floatage. The mosquito also preferred open or partially shaded habitats. Breeding habitats were generally located at 100-400 m from the nearest human settlement. Changes in breeding characteristics were also observed. Instead of breeding in slow flowing streams, most larvae bred in small water pockets along the river margin.
    Matched MeSH terms: Ecosystem*
  13. Mariana A, Zuraidawati Z, Ho TM, Kulaimi BM, Saleh I, Shukor MN, et al.
    PMID: 18564690
    A survey of ticks and other ectoparasites was carried out during a national biodiversity scientific expedition at Ulu Muda Forest Reserve, Kedah, Malaysia from 23-29 March 2003. A total of 161 animals comprising 20 species of birds, 16 species of bats, six species of non-volant small mammals and 12 species of reptiles were examined for ticks and other ectoparasites. From these animals, nine species in five genera of ticks, 10 species in two families of Mesostigmatid mites and five species of chiggers were collected. Three of the ectoparasitic species found, Dermacentor auratus, Ixodes granulatus and Leptotrombidium deliense are of known public health importance. This survey produced the first list of ticks and other ectoparasites in the forest reserve and the third study of ectoparasites in Kedah. Fourteen species of these ectoparasites are new locality records.
    Matched MeSH terms: Ecosystem
  14. Mariana A, Zuraidawati Z, Ho TM, Mohd Kulaimi B, Saleh I, Shukor MN, et al.
    PMID: 16438136
    A survey of ticks and other ectoparasites was carried out during a national biodiversity scientific expedition at Gunung Stong Forest Reserve, Kelantan, Malaysia from 23-29 May 2003. A total of 272 animals comprised of 12 species of birds, 21 species of bats, 7 species of rodents and 2 species of insects were examined for ticks and other ectoparasites. From these animals, 5 species in 4 genera of ticks; 7 species in 2 families of Mesostigmatid mites and 5 species of chiggers were collected. Among the ectoparasites found were Ixodes granulatus and Leptotrombidium deliense, which are of known medical importance. A tick island consisting of 10 nymphal stages of Dermacentor spp was observed feeding on Rattus tiomanicus.
    Matched MeSH terms: Ecosystem
  15. Ali WN, Ahmad R, Nor ZM, Ismail Z, Ibrahim MN, Hadi AA, et al.
    PMID: 23413702
    Many of the most widely spread vector-borne diseases are water related, in that the mosquito vectors concerned breed or pass part of their lifecycle in or close to water. A major reason for the study of mosquito larval ecology is to gather information on environmental variables that may determine the species of mosquitoes and the distribution of larvae in the breeding habitats. Larval surveillance studies were conducted six times between May 2008 and October 2009 in Pos Lenjang, Kuala Lipis, Pahang. Twelve environmental variables were recorded for each sampling site, and samples of mosquito larvae were collected. Larval survey studies showed that anopheline and culicine larvae were collected from 79 and 67 breeding sites, respectively. All breeding sites were classified into nine habitat groups. Culicine larvae were found in all habitat groups, suggesting that they are very versatile and highly adaptable to different types of environment. Rock pools or water pockets with clear water formed on the bank of rivers and waterfalls were the most common habitats associated with An. maculatus. Environmental variables influence the suitability of aquatic habitats for anopheline and culicine larvae, but not significantly associated with the occurrence of both larvae genera (p>0.05). This study provides information on mosquito ecology in relation to breeding habitats that will be useful in designing and implementing larval control operations.
    Matched MeSH terms: Ecosystem
  16. Jinggut T, Yule CM, Boyero L
    Sci Total Environ, 2012 Oct 15;437:83-90.
    PMID: 22922133 DOI: 10.1016/j.scitotenv.2012.07.062
    In common with most of Borneo, the Bakun region of Sarawak is currently subject to heavy deforestation mainly due to logging and, to a lesser extent, traditional slash-and-burn farming practices. This has the potential to affect stream ecosystems, which are integrators of environmental change in the surrounding terrestrial landscape. This study evaluated the effects of both types of deforestation by using functional and structural indicators (leaf litter decomposition rates and associated detritivores or 'shredders', respectively) to compare a fundamental ecosystem process, leaf litter decomposition, within logged, farmed and pristine streams. Slash-and-burn agricultural practices increased the overall rate of decomposition despite a decrease in shredder species richness (but not shredder abundance) due to increased microbial decomposition. In contrast, decomposition by microbes and invertebrates was slowed down in the logged streams, where shredders were less abundant and less species rich. This study suggests that shredder communities are less affected by traditional agricultural farming practices, while modern mechanized deforestation has an adverse effect on both shredder communities and leaf breakdown.
    Matched MeSH terms: Ecosystem*
  17. Serrano O, Davis G, Lavery PS, Duarte CM, Martinez-Cortizas A, Mateo MA, et al.
    Sci Total Environ, 2016 Jan 15;541:883-894.
    PMID: 26437357 DOI: 10.1016/j.scitotenv.2015.09.017
    The study of a Posidonia australis sedimentary archive has provided a record of changes in element concentrations (Al, Fe, Mn, Pb, Zn, Cr, Cd, Co, As, Cu, Ni and S) over the last 3000 years in the Australian marine environment. Human-derived contamination in Oyster Harbor (SW Australia) started ~100 years ago (AD ~1900) and exponentially increased until present. This appears to be related to European colonization of Australia and the subsequent impact of human activities, namely mining, coal and metal production, and extensive agriculture. Two contamination periods of different magnitude have been identified: Expansion period (EXP, AD ~1900-1970) and Establishment period (EST, AD ~1970 to present). Enrichments of chemical elements with respect to baseline concentrations (in samples older than ~115 cal years BP) were found for all elements studied in both periods, except for Ni, As and S. The highest enrichment factors were obtained for the EST period (ranging from 1.3-fold increase in Cu to 7.2-fold in Zn concentrations) compared to the EXP period (1.1-fold increase for Cu and Cr to 2.4-fold increase for Pb). Zinc, Pb, Mn and Co concentrations during both periods were 2- to 7-fold higher than baseline levels. This study demonstrates the value of Posidonia mats as long-term archives of element concentrations and trends in coastal ecosystems. We also provide preliminary evidence on the potential for Posidonia meadows to act as significant long-term biogeochemical sinks of chemical elements.
    Matched MeSH terms: Ecosystem*
  18. Kooijman AM, Bruin CJW, van de Craats A, Grootjans AP, Oostermeijer JGB, Scholten R, et al.
    Sci Total Environ, 2016 Oct 15;568:107-117.
    PMID: 27289393 DOI: 10.1016/j.scitotenv.2016.05.086
    Dune slacks are important habitats, with many endangered plant species. A series of eleven dune slacks of 1-42years old was studied in SW-Texel, the Netherlands, with the EU-habitat directive species Liparis loeselii present in all except the youngest and oldest. Analysis of aerial photographs revealed that new slacks are currently formed every 4-5years. In each slack, topsoil and vegetation data were collected in 2010 and 2014-2015. During succession, vegetation changed from brackish pioneer stages to dune slacks with L. loeselii and Parnassia palustris and ultimately grassland species. Differences between dune slacks and sampling periods were mostly significant. Herb cover and soil C increased with slack age, and over the five year study period, while bare sand, bulk density and pH decreased. The annual pH-decrease was 0.055 and 0.075 for pH-H2O and pH-KCl respectively, and annual C-increase 0.16% and 35gm(-2). Liparis loeselii was only present between pHH2O 5.8-7.5 and pHKCl 5.6-7.6, and only occurred at C-content below 4.3%. In lime-poor dunes, environmental conditions thus become unsuitable approximately 34years after the start of succession. In the dune slacks, Liparis loeselii established within 6years, showed peak values after 11-16years, and declined until conditions became unsuitable. Rejuvenation may occur after large storms with fresh sand deposits. However, even with further succession, the present populations are not endangered and probably last until 2040. With new dune slacks every 5years, L. loeselii occurs in approximately eight different dune slacks at the same time, ensuring viable populations also in the future. This shows that adverse effects of succession can be counteracted by dynamics on local and landscape scale.
    Matched MeSH terms: Ecosystem*
  19. Breulman G, Markert B, Weckert V, Herpin U, Yoneda R, Ogino K
    Sci Total Environ, 2002 Feb 21;285(1-3):107-15.
    PMID: 11874033
    Leaf samples of tropical trees, i.e. Dryobalanops lanceolata (Kapur paji), Dipterocarpaceae and Macaranga spp. (Mahang), Euphorbiaceae were analyzed for 21 chemical elements. The pioneer Macaranga spp. exhibited higher concentrations for the majority of elements compared to the emergent species of Dryobalanops lanceolata, which was attributed to the higher physiological activity of the fast growing pioneer species compared to emergent trees. Lead showed rather high concentrations in several samples from the Bakam re-forestation site. This is suggested to be caused by emissions through brick manufacturing and related activities in the vicinity. A comparison of Dryobalanops lanceolata samples collected in 1993, 1995 and 1997 in the Lambir Hills National Park revealed that certain heavy metals, i.e. Co, Cu, Mn, Ni, Pb and Ti showed higher values in 1997 compared to the previous years, which could indicate an atmospheric input from the haze caused by the extensive forest fires raging in Borneo and other parts of Southeast Asia.
    Matched MeSH terms: Ecosystem
  20. Lim PE, Tay MG, Mak KY, Mohamed N
    Sci Total Environ, 2003 Jan 01;301(1-3):13-21.
    PMID: 12493181
    The objective of this study is to investigate the respective effects of Zn, Pb and Cd as well as the combined effect of Zn, Pb, Cd and Cu on the removal of nitrogen and oxygen demand in constructed wetlands. Four laboratory-scale gravel-filled subsurface-flow constructed wetland units planted with cattails (Typha latifolia) were operated outdoors and fed with primary-treated domestic wastewater at a constant flow rate of 25 ml/min. After 6 months, three of the wetland units were fed with the same type of wastewater spiked with Zn(II), Pb(II) and Cd(II), respectively, at 20, 5 and 1 mg/l for a further 9 months. The remaining unit was fed with the same type of wastewater spiked with a combination of Zn(II), Pb(II), Cd(II) and Cu(II) at concentrations of 10, 2.5, 0.5 and 5 mg/l, respectively, over the same period. The chemical oxygen demand (COD) and ammoniacal nitrogen (AN) concentrations were monitored at the inlet, outlet and three additional locations along the length of the wetland units to assess the performance of the wetland units at various metal loadings. At the end of the study, all cattail plants were harvested for the determination of total Kjeldahl nitrogen and metal concentrations. The results showed that the COD removal efficiency was practically independent of increasing metal loading or a combination of metal loadings during the duration of the study. In contrast, the AN removal efficiency deteriorated progressively with increasing metal loading. The relative effect of the heavy metals was found to increase in the order: Zn
    Matched MeSH terms: Ecosystem*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links