Displaying publications 161 - 180 of 182 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):371.
    PMID: 28280444 DOI: 10.1140/epjc/s10052-016-4206-6
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons ([Formula: see text]) in proton-proton collisions collected by the CMS experiment at the LHC at [Formula: see text]. The data correspond to an integrated luminosity of 19.7[Formula: see text]. The search considers [Formula: see text] resonances with masses between 1 and 3[Formula: see text], having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and [Formula: see text] events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 % confidence level for the product of the production cross section and branching fraction [Formula: see text] range from 10 to 1.5[Formula: see text] for the mass of X from 1.15 to 2.0[Formula: see text], significantly extending previous searches. For a warped extra dimension theory with a mass scale [Formula: see text] [Formula: see text], the data exclude radion scalar masses between 1.15 and 1.55[Formula: see text].
  2. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(8):688.
    PMID: 34780582 DOI: 10.1140/epjc/s10052-021-09348-6
    A search is presented for a heavy vector resonance decaying into a Z boson and the standard model Higgs boson, where the Z boson is identified through its leptonic decays to electrons, muons, or neutrinos, and the Higgs boson is identified through its hadronic decays. The search is performed in a Lorentz-boosted regime and is based on data collected from 2016 to 2018 at the CERN LHC, corresponding to an integrated luminosity of 137 fb - 1 . Upper limits are derived on the production of a narrow heavy resonance Z ' , and a mass below 3.5 and 3.7 Te is excluded at 95% confidence level in models where the heavy vector boson couples predominantly to fermions and to bosons, respectively. These are the most stringent limits placed on the Heavy Vector Triplet Z ' model to date. If the heavy vector boson couples exclusively to standard model bosons, upper limits on the product of the cross section and branching fraction are set between 23 and 0.3 fb for a Z ' mass between 0.8 and 4.6 Te , respectively. This is the first limit set on a heavy vector boson coupling exclusively to standard model bosons in its production and decay.
  3. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    PMID: 31976987 DOI: 10.1140/epjc/s10052-019-7493-x
    Two related searches for phenomena beyond the standard model (BSM) are performed using events with hadronic jets and significant transverse momentum imbalance. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13 Te , collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 137 fb - 1 . The first search is inclusive, based on signal regions defined by the hadronic energy in the event, the jet multiplicity, the number of jets identified as originating from bottom quarks, and the value of the kinematic variable M T 2 for events with at least two jets. For events with exactly one jet, the transverse momentum of the jet is used instead. The second search looks in addition for disappearing tracks produced by BSM long-lived charged particles that decay within the volume of the tracking detector. No excess event yield is observed above the predicted standard model background. This is used to constrain a range of BSM models that predict the following: the pair production of gluinos and squarks in the context of supersymmetry models conserving R-parity, with or without intermediate long-lived charginos produced in the decay chain; the resonant production of a colored scalar state decaying to a massive Dirac fermion and a quark; or the pair production of scalar and vector leptoquarks each decaying to a neutrino and a top, bottom, or light-flavor quark. In most of the cases, the results obtained are the most stringent constraints to date.
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):90.
    PMID: 30814908 DOI: 10.1140/epjc/s10052-019-6556-3
    A search is presented for the single production of vector-like quarks in proton-proton collisions at


    s

    =
    13

    TeV

    . The data, corresponding to an integrated luminosity of 35.9



    fb

    -
    1



    , were recorded with the CMS experiment at the LHC. The analysis focuses on the vector-like quark decay into a top quark and a
    W
    boson, with one muon or electron in the final state. The mass of the vector-like quark candidate is reconstructed from hadronic jets, the lepton, and the missing transverse momentum. Methods for the identification of
    b
    quarks and of highly Lorentz boosted hadronically decaying top quarks and
    W
    bosons are exploited in this search. No significant deviation from the standard model background expectation is observed. Exclusion limits at 95% confidence level are set on the product of the production cross section and branching fraction as a function of the vector-like quark mass, which range from 0.3 to 0.03


    pb

    for vector-like quark masses of 700 to 2000


    GeV

    . Mass exclusion limits up to 1660


    GeV

    are obtained, depending on the vector-like quark type, coupling, and decay width. These represent the most stringent exclusion limits for the single production of vector-like quarks in this channel.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(4):364.
    PMID: 31180390 DOI: 10.1140/epjc/s10052-019-6855-8
    A search for the pair production of heavy vector-like partners T and B of the top and bottom quarks has been performed by the CMS experiment at the CERN LHC using proton-proton collisions at s = 13 Te . The data sample was collected in 2016 and corresponds to an integrated luminosity of 35.9 fb - 1 . Final states studied for T T ¯ production include those where one of the T quarks decays via T → t Z and the other via T → b W , t Z , or t H , where H is a Higgs boson. For the B B ¯ case, final states include those where one of the B quarks decays via B → b Z and the other B → t W , b Z , or b H . Events with two oppositely charged electrons or muons, consistent with coming from the decay of a Z boson, and jets are investigated. The number of observed events is consistent with standard model background estimations. Lower limits at 95% confidence level are placed on the masses of the T and B quarks for a range of branching fractions. Assuming 100% branching fractions for T → t Z , and B → b Z , T and B quark mass values below 1280 and 1130 Ge , respectively, are excluded.
  6. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):236.
    PMID: 28515665 DOI: 10.1140/epjc/s10052-017-4730-z
    The WZ production cross section is measured by the CMS experiment at the CERN LHC in proton-proton collision data samples corresponding to integrated luminosities of 4.9[Formula: see text] collected at [Formula: see text], and 19.6[Formula: see text] at [Formula: see text]. The measurements are performed using the fully-leptonic WZ decay modes with electrons and muons in the final state. The measured cross sections for [Formula: see text] are [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text]. Differential cross sections with respect to the [Formula: see text] boson [Formula: see text], the leading jet [Formula: see text], and the number of jets are obtained using the [Formula: see text] data. The results are consistent with standard model predictions and constraints on anomalous triple gauge couplings are obtained.
  7. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):252.
    PMID: 28515669 DOI: 10.1140/epjc/s10052-017-4781-1
    The nuclear modification factor [Formula: see text] and the azimuthal anisotropy coefficient [Formula: see text] of prompt and nonprompt (i.e. those from decays of b hadrons) [Formula: see text] mesons, measured from PbPb and pp collisions at [Formula: see text] [Formula: see text] at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta [Formula: see text] [Formula: see text] and rapidity [Formula: see text], extending down to [Formula: see text] [Formula: see text] in the [Formula: see text] range. The [Formula: see text] of prompt [Formula: see text] is found to be nonzero, but with no strong dependence on centrality, rapidity, or [Formula: see text] over the full kinematic range studied. The measured [Formula: see text] of nonprompt [Formula: see text] is consistent with zero. The [Formula: see text] of prompt [Formula: see text] exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or [Formula: see text] in the fiducial range. The nonprompt [Formula: see text] [Formula: see text] shows a suppression which becomes stronger as rapidity or [Formula: see text] increases. The [Formula: see text] and [Formula: see text] of open and hidden charm, and of open charm and beauty, are compared.
  8. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(4):269.
    PMID: 28515672 DOI: 10.1140/epjc/s10052-017-4828-3
    This paper reports the measurement of [Formula: see text] meson production in proton-proton ([Formula: see text]) and proton-lead ([Formula: see text]) collisions at a center-of-mass energy per nucleon pair of [Formula: see text] by the CMS experiment at the LHC. The data samples used in the analysis correspond to integrated luminosities of 28[Formula: see text] and 35[Formula: see text] for [Formula: see text] and [Formula: see text] collisions, respectively. Prompt and nonprompt [Formula: see text] mesons, the latter produced in the decay of [Formula: see text] hadrons, are measured in their dimuon decay channels. Differential cross sections are measured in the transverse momentum range of [Formula: see text], and center-of-mass rapidity ranges of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]). The nuclear modification factor, [Formula: see text], is measured as a function of both [Formula: see text] and [Formula: see text]. Small modifications to the [Formula: see text] cross sections are observed in [Formula: see text] relative to [Formula: see text] collisions. The ratio of [Formula: see text] production cross sections in [Formula: see text]-going and Pb-going directions, [Formula: see text], studied as functions of [Formula: see text] and [Formula: see text], shows a significant decrease for increasing transverse energy deposited at large pseudorapidities. These results, which cover a wide kinematic range, provide new insight on the role of cold nuclear matter effects on prompt and nonprompt [Formula: see text] production.
  9. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2017;77(7):467.
    PMID: 28943793 DOI: 10.1140/epjc/s10052-017-5030-3
    The first measurement of the jet mass [Formula: see text] of top quark jets produced in [Formula: see text] events from pp collisions at [Formula: see text] [Formula: see text] is reported for the jet with the largest transverse momentum [Formula: see text] in highly boosted hadronic top quark decays. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the lepton+jets channel in which the products of the semileptonic decay [Formula: see text] with [Formula: see text] where [Formula: see text] is an electron or muon, are used to select [Formula: see text] events with large Lorentz boosts. The products of the fully hadronic decay [Formula: see text] with [Formula: see text] are reconstructed using a single Cambridge-Aachen jet with distance parameter [Formula: see text], and [Formula: see text] [Formula: see text]. The [Formula: see text] cross section as a function of [Formula: see text] is unfolded at the particle level and is used to test the modelling of highly boosted top quark production. The peak position of the [Formula: see text] distribution is sensitive to the top quark mass [Formula: see text], and the data are used to extract a value of [Formula: see text] to assess this sensitivity.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2020;80(2):75.
    PMID: 32108833 DOI: 10.1140/epjc/s10052-019-7593-7
    The standard model (SM) production of four top quarks ( t t ¯ t t ¯ ) in proton-proton collisions is studied by the CMS Collaboration. The data sample, collected during the 2016-2018 data taking of the LHC, corresponds to an integrated luminosity of 137 fb - 1 at a center-of-mass energy of 13 TeV . The events are required to contain two same-sign charged leptons (electrons or muons) or at least three leptons, and jets. The observed and expected significances for the t t ¯ t t ¯ signal are respectively 2.6 and 2.7 standard deviations, and the t t ¯ t t ¯ cross section is measured to be 12 . 6 - 5.2 + 5.8 fb . The results are used to constrain the Yukawa coupling of the top quark to the Higgs boson, y t , yielding a limit of | y t / y t SM | < 1.7 at 95 % confidence level, where y t SM is the SM value of y t . They are also used to constrain the oblique parameter of the Higgs boson in an effective field theory framework, H ^ < 0.12 . Limits are set on the production of a heavy scalar or pseudoscalar boson in Type-II two-Higgs-doublet and simplified dark matter models, with exclusion limits reaching 350-470 GeV and 350-550 GeV for scalar and pseudoscalar bosons, respectively. Upper bounds are also set on couplings of the top quark to new light particles.
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):444.
    PMID: 31265003 DOI: 10.1140/epjc/s10052-019-6926-x
    A search for supersymmetry is presented based on events with at least one photon, jets, and large missing transverse momentum produced in proton-proton collisions at a center-of-mass energy of 13



    Te



    . The data correspond to an integrated luminosity of 35.9



    fb

    -
    1



    and were recorded at the LHC with the CMS detector in 2016. The analysis characterizes signal-like events by categorizing the data into various signal regions based on the number of jets, the number of
    b
    -tagged jets, and the missing transverse momentum. No significant excess of events is observed with respect to the expectations from standard model processes. Limits are placed on the gluino and top squark pair production cross sections using several simplified models of supersymmetric particle production with gauge-mediated supersymmetry breaking. Depending on the model and the mass of the next-to-lightest supersymmetric particle, the production of gluinos with masses as large as 2120



    Ge



    and the production of top squarks with masses as large as 1230



    Ge



    are excluded at 95% confidence level.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):421.
    PMID: 31178657 DOI: 10.1140/epjc/s10052-019-6909-y
    Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at s = 13 Te , corresponding to an integrated luminosity of 35.9 fb - 1 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H → γ γ , Z Z , W W , τ τ , b b , and μ μ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be μ = 1.17 ± 0.10 , assuming a Higgs boson mass of 125.09 Ge . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(9):773.
    PMID: 31713548 DOI: 10.1140/epjc/s10052-019-7276-4
    A measurement for inclusive 2- and 3-jet events of the azimuthal correlation between the two jets with the largest transverse momenta, Δ ϕ 12 , is presented. The measurement considers events where the two leading jets are nearly collinear ("back-to-back") in the transverse plane and is performed for several ranges of the leading jet transverse momentum. Proton-proton collision data collected with the CMS experiment at a center-of-mass energy of 13 Te and corresponding to an integrated luminosity of 35.9 fb - 1 are used. Predictions based on calculations using matrix elements at leading-order and next-to-leading-order accuracy in perturbative quantum chromodynamics supplemented with leading-log parton showers and hadronization are generally in agreement with the measurements. Discrepancies between the measurement and theoretical predictions are as large as 15%, mainly in the region 177 ∘ < Δ ϕ 12 < 180 ∘ . The 2- and 3-jet measurements are not simultaneously described by any of models.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(7):564.
    PMID: 31397444 DOI: 10.1140/epjc/s10052-019-7058-z
    A search is presented for a heavy pseudoscalar boson A decaying to a Z  boson and a Higgs boson with mass of 125 GeV . In the final state considered, the Higgs boson decays to a bottom quark and antiquark, and the Z  boson decays either into a pair of electrons, muons, or neutrinos. The analysis is performed using a data sample corresponding to an integrated luminosity of 35.9 fb - 1 collected in 2016 by the CMS experiment at the LHC from proton-proton collisions at a center-of-mass energy of 13 Te . The data are found to be consistent with the background expectations. Exclusion limits are set in the context of two-Higgs-doublet models in the A boson mass range between 225 and 1000 GeV .
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(11):886.
    PMID: 31764915 DOI: 10.1140/epjc/s10052-019-7387-y
    A search for new physics in top quark production is performed in proton-proton collisions at 13 TeV . The data set corresponds to an integrated luminosity of 35.9 fb - 1 collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating t W from t t ¯  events and exploiting the specific sensitivity of the t W process to new physics.
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(9):636.
    PMID: 32011608 DOI: 10.1140/epjc/s10052-017-5192-z
    A search for heavy resonances with masses above 1 TeV , decaying to final states containing a vector boson and a Higgs boson, is presented. The search considers hadronic decays of the vector boson, and Higgs boson decays to b quarks. The decay products are highly boosted, and each collimated pair of quarks is reconstructed as a single, massive jet. The analysis is performed using a data sample collected in 2016 by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV , corresponding to an integrated luminosity of 35.9 fb - 1 . The data are consistent with the background expectation and are used to place limits on the parameters of a theoretical model with a heavy vector triplet. In the benchmark scenario with mass-degenerate W ' and Z ' bosons decaying predominantly to pairs of standard model bosons, for the first time heavy resonances for masses as high as 3.3 TeV are excluded at 95% confidence level, setting the most stringent constraints to date on such states decaying into a vector boson and a Higgs boson.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(11):891.
    PMID: 30881206 DOI: 10.1140/epjc/s10052-018-6332-9
    The mass of the top quark is measured using a sample of t t ¯ events collected by the CMS detector using proton-proton collisions at s = 13 TeV at the CERN LHC. Events are selected with one isolated muon or electron and at least four jets from data corresponding to an integrated luminosity of 35.9 fb - 1 . For each event the mass is reconstructed from a kinematic fit of the decay products to a t t ¯ hypothesis. Using the ideogram method, the top quark mass is determined simultaneously with an overall jet energy scale factor (JSF), constrained by the mass of the W boson in q q ¯ ' decays. The measurement is calibrated on samples simulated at next-to-leading order matched to a leading-order parton shower. The top quark mass is found to be 172.25 ± 0.08 (stat+JSF) ± 0.62 (syst) GeV . The dependence of this result on the kinematic properties of the event is studied and compared to predictions of different models of t t ¯ production, and no indications of a bias in the measurements are observed.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(3):277.
    PMID: 31007586 DOI: 10.1140/epjc/s10052-019-6774-8
    The exclusive photoproduction of Υ ( nS ) meson states from protons, γ p → Υ ( nS ) p (with n = 1 , 2 , 3 ), is studied in ultraperipheral p Pb collisions at a centre-of-mass energy per nucleon pair of s NN = 5.02 TeV . The measurement is performed using the Υ ( nS ) → μ + μ - decay mode, with data collected by the CMS experiment corresponding to an integrated luminosity of 32.6 nb - 1 . Differential cross sections as functions of the Υ ( nS ) transverse momentum squared p T 2 , and rapidity y, are presented. The Υ ( 1 S ) photoproduction cross section is extracted in the rapidity range | y | < 2.2 , which corresponds to photon-proton centre-of-mass energies in the range 91 < W γ p < 826 GeV . The data are compared to theoretical predictions based on perturbative quantum chromodynamics and to previous measurements.
  19. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(9):852.
    PMID: 34727147 DOI: 10.1140/epjc/s10052-021-09570-2
    Collinear (small-angle) and large-angle, as well as soft and hard radiations are investigated in three-jet and Z  + two-jet events collected in proton-proton collisions at the LHC. The normalized production cross sections are measured as a function of the ratio of transverse momenta of two jets and their angular separation. The measurements in the three-jet and Z  + two-jet events are based on data collected at a center-of-mass energy of 8 TeV , corresponding to an integrated luminosity of 19.8 fb - 1 . The Z  + two-jet events are reconstructed in the dimuon decay channel of the Z  boson. The three-jet measurement is extended to include s = 13 TeV data corresponding to an integrated luminosity of 2.3 fb - 1 . The results are compared to predictions from event generators that include parton showers, multiple parton interactions, and hadronization. The collinear and soft regions are in general well described by parton showers, whereas the regions of large angular separation are often best described by calculations using higher-order matrix elements.
  20. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Eur Phys J C Part Fields, 2021;81(4):378.
    PMID: 34727142 DOI: 10.1140/epjc/s10052-021-09014-x
    The rate for Higgs ( H ) bosons production in association with either one ( t H ) or two ( t t ¯ H ) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton-proton collisions recorded at a center-of-mass energy of 13 TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137 fb - 1 . The analysis is aimed at events that contain H → W W , H → τ τ , or H → Z Z decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among t H , t t ¯ H , and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the t t ¯ H and t H signals correspond to 0.92 ± 0.19 (stat) - 0.13 + 0.17 (syst) and 5.7 ± 2.7 (stat) ± 3.0 (syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for t t ¯ H , and to 1.4 (0.3) for t H production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling y t of the Higgs boson to the top quark divided by its SM expectation, κ t = y t / y t SM , is constrained to be within - 0.9 < κ t < - 0.7 or 0.7 < κ t < 1.1 , at 95% confidence level. This result is the most sensitive measurement of the t t ¯ H production rate to date.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links