The first search exploiting the vector boson fusion process to probe heavy Majorana neutrinos and the Weinberg operator at the LHC is presented. The search is performed in the same-sign dimuon final state using a proton-proton collision dataset recorded at sqrt[s]=13 TeV, collected with the CMS detector and corresponding to a total integrated luminosity of 138 fb^{-1}. The results are found to agree with the predictions of the standard model. For heavy Majorana neutrinos, constraints on the squared mixing element between the muon and the heavy neutrino are derived in the heavy neutrino mass range 50 GeV-25 TeV; for masses above 650 GeV these are the most stringent constraints from searches at the LHC to date. A first test of the Weinberg operator at colliders provides an observed upper limit at 95% confidence level on the effective μμ Majorana neutrino mass of 10.8 GeV.
A search for the standard model Higgs boson decaying to a charm quark-antiquark pair, H→cc[over ¯], produced in association with a leptonically decaying V (W or Z) boson is presented. The search is performed with proton-proton collisions at sqrt[s]=13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb^{-1}. Novel charm jet identification and analysis methods using machine learning techniques are employed. The analysis is validated by searching for Z→cc[over ¯] in VZ events, leading to its first observation at a hadron collider with a significance of 5.7 standard deviations. The observed (expected) upper limit on σ(VH)B(H→cc[over ¯]) is 0.94 (0.50_{-0.15}^{+0.22})pb at 95% confidence level (C.L.), corresponding to 14 (7.6_{-2.3}^{+3.4}) times the standard model prediction. For the Higgs-charm Yukawa coupling modifier, κ_{c}, the observed (expected) 95% C.L. interval is 1.1
The structure of nucleons is multidimensional and depends on the transverse momenta, spatial geometry, and polarization of the constituent partons. Such a structure can be studied using high-energy photons produced in ultraperipheral heavy-ion collisions. The first measurement of the azimuthal angular correlations of exclusively produced events with two jets in photon-lead interactions at large momentum transfer is presented, a process that is considered to be sensitive to the underlying nuclear gluon polarization. This study uses a data sample of ultraperipheral lead-lead collisions at sqrt[s_{NN}]=5.02 TeV, corresponding to an integrated luminosity of 0.38 nb^{-1}, collected with the CMS experiment at the LHC. The measured second harmonic of the correlation between the sum and difference of the two jet transverse momentum vectors is found to be positive, and rising, as the dijet transverse momentum increases. A well-tuned model that has been successful at describing a wide range of proton scattering data from the HERA experiments fails to describe the observed correlations, suggesting the presence of gluon polarization effects.
A search for nonresonant Higgs boson (H) pair production via gluon and vector boson (V) fusion is performed in the four-bottom-quark final state, using proton-proton collision data at 13 TeV corresponding to 138 fb^{-1} collected by the CMS experiment at the LHC. The analysis targets Lorentz-boosted H pairs identified using a graph neural network. It constrains the strengths relative to the standard model of the H self-coupling and the quartic VVHH couplings, κ_{2V}, excluding κ_{2V}=0 for the first time, with a significance of 6.3 standard deviations when other H couplings are fixed to their standard model values.
A search for the standard model (SM) Higgs boson (H) produced with transverse momentum (p_{T}) greater than 450 GeV and decaying to a charm quark-antiquark (cc[over ¯]) pair is presented. The search is performed using proton-proton collision data collected at sqrt[s]=13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb^{-1}. Boosted H→cc[over ¯] decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z→cc[over ¯] decay process, which is observed in association with jets at high p_{T} for the first time with a signal strength of 1.00_{-0.14}^{+0.17}(syst)±0.08(theo)±0.06(stat), defined as the ratio of the observed process rate to the SM expectation. The observed (expected) upper limit on σ(H)B(H→cc[over ¯]) is set at 47 (39) times the SM prediction at 95% confidence level.
We present the first direct search for exotic Higgs boson decays H→AA, A→γγ in events with two photonlike objects. The hypothetical particle A is a low-mass spin-0 particle decaying promptly to a merged diphoton reconstructed as a single photonlike object. We analyze the data collected by the CMS experiment at sqrt[s]=13 TeV corresponding to an integrated luminosity of 136 fb^{-1}. No excess above the estimated background is found. We set upper limits on the branching fraction B(H→AA→4γ) of (0.9-3.3)×10^{-3} at 95% confidence level for masses of A in the range 0.1-1.2 GeV.
The first observation of the production of W^{±}W^{±} bosons from double parton scattering processes using same-sign electron-muon and dimuon events in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of 138 fb^{-1} recorded at a center-of-mass energy of 13 TeV using the CMS detector at the CERN LHC. Multivariate discriminants are used to distinguish the signal process from the main backgrounds. A binned maximum likelihood fit is performed to extract the signal cross section. The measured cross section for production of same-sign W bosons decaying leptonically is 80.7±11.2(stat) _{-8.6}^{+9.5}(syst)±12.1(model) fb, whereas the measured fiducial cross section is 6.28±0.81(stat)±0.69(syst)±0.37(model) fb. The observed significance of the signal is 6.2 standard deviations above the background-only hypothesis.
A search for the rare η→μ^{+}μ^{-}μ^{+}μ^{-} double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101 fb^{-1}. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→μ^{+}μ^{-} decay as normalization, the branching fraction B(η→μ^{+}μ^{-}μ^{+}μ^{-})=[5.0±0.8(stat)±0.7(syst)±0.7(B_{2μ})]×10^{-9} is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions.
The production of Z bosons associated with jets is measured in pp collisions at s=13TeV with data recorded with the CMS experiment at the LHC corresponding to an integrated luminosity of 36.3fb-1. The multiplicity of jets with transverse momentum pT>30GeV is measured for different regions of the Z boson's pT(Z), from lower than 10GeV to higher than 100GeV. The azimuthal correlation Δϕ between the Z boson and the leading jet, as well as the correlations between the two leading jets are measured in three regions of pT(Z). The measurements are compared with several predictions at leading and next-to-leading orders, interfaced with parton showers. Predictions based on transverse-momentum dependent parton distributions and corresponding parton showers give a good description of the measurement in the regions where multiple parton interactions and higher jet multiplicities are not important. The effects of multiple parton interactions are shown to be important to correctly describe the measured spectra in the low pT(Z) regions.
The double differential cross sections of the Drell-Yan lepton pair (ℓ+ℓ-, dielectron or dimuon) production are measured as functions of the invariant mass mℓℓ, transverse momentum pT(ℓℓ), and φη∗. The φη∗ observable, derived from angular measurements of the leptons and highly correlated with pT(ℓℓ), is used to probe the low-pT(ℓℓ) region in a complementary way. Dilepton masses up to 1TeV are investigated. Additionally, a measurement is performed requiring at least one jet in the final state. To benefit from partial cancellation of the systematic uncertainty, the ratios of the differential cross sections for various mℓℓ ranges to those in the Z mass peak interval are presented. The collected data correspond to an integrated luminosity of 36.3fb-1 of proton-proton collisions recorded with the CMS detector at the LHC at a centre-of-mass energy of 13TeV. Measurements are compared with predictions based on perturbative quantum chromodynamics, including soft-gluon resummation.
New sets of parameter tunes for two of the colour reconnection models, quantum chromodynamics-inspired and gluon-move, implemented in the pythia 8 event generator, are obtained based on the default CMS pythia 8 underlying-event tune, CP5. Measurements sensitive to the underlying event performed by the CMS experiment at centre-of-mass energies s=7 and 13TeV, and by the CDF experiment at 1.96TeV are used to constrain the parameters of colour reconnection models and multiple-parton interactions simultaneously. The new colour reconnection tunes are compared with various measurements at 1.96, 7, 8, and 13TeV including measurements of the underlying-event, strange-particle multiplicities, jet substructure observables, jet shapes, and colour flow in top quark pair (tt¯) events. The new tunes are also used to estimate the uncertainty related to colour reconnection modelling in the top quark mass measurement using the decay products of tt¯ events in the semileptonic channel at 13TeV.
Quasireal photons exchanged in relativistic heavy ion interactions are powerful probes of the gluonic structure of nuclei. The coherent J/ψ photoproduction cross section in ultraperipheral lead-lead collisions is measured as a function of photon-nucleus center-of-mass energies per nucleon (W_{γN}^{Pb}) over a wide range of 40
A search for dark matter in events with a displaced nonresonant muon pair and missing transverse momentum is presented. The analysis is performed using an integrated luminosity of 138 fb^{-1} of proton-proton (pp) collision data at a center-of-mass energy of 13 TeV produced by the LHC in 2016-2018. No significant excess over the predicted backgrounds is observed. Upper limits are set on the product of the inelastic dark matter production cross section σ(pp→A^{'}→χ_{1}χ_{2}) and the decay branching fraction B(χ_{2}→χ_{1}μ^{+}μ^{-}), where A^{'} is a dark photon and χ_{1} and χ_{2} are states in the dark sector with near mass degeneracy. This is the first dedicated collider search for inelastic dark matter.
The first search for scalar leptoquarks produced in τ-lepton-quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138 fb^{-1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength.
The mass of the top quark is measured in 36.3fb-1 of LHC proton-proton collision data collected with the CMS detector at s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be 171.77±0.37GeV. This approach significantly improves the precision over previous measurements.
A search is reported for near-threshold structures in the J/ψJ/ψ invariant mass spectrum produced in proton-proton collisions at sqrt[s]=13 TeV from data collected by the CMS experiment, corresponding to an integrated luminosity of 135 fb^{-1}. Three structures are found, and a model with quantum interference among these structures provides a good description of the data. A new structure is observed with a local significance above 5 standard deviations at a mass of 6638_{-38}^{+43}(stat)_{-31}^{+16}(syst) MeV. Another structure with even higher significance is found at a mass of 6847_{-28}^{+44}(stat)_{-20}^{+48}(syst) MeV, which is consistent with the X(6900) resonance reported by the LHCb experiment and confirmed by the ATLAS experiment. Evidence for another new structure, with a local significance of 4.7 standard deviations, is found at a mass of 7134_{-25}^{+48}(stat)_{-15}^{+41}(syst) MeV. Results are also reported for a model without interference, which does not fit the data as well and shows mass shifts up to 150 MeV relative to the model with interference.
A measurement of the top quark pair production ([Formula: see text]) cross section in proton-proton collisions at the centre-of-mass energy of 8[Formula: see text] is presented using data collected with the CMS detector at the LHC, corresponding to an integrated luminosity of 19.6[Formula: see text]. This analysis is performed in the [Formula: see text] decay channels with one isolated, high transverse momentum electron or muon and at least four jets, at least one of which is required to be identified as originating from hadronization of a b quark. The calibration of the jet energy scale and the efficiency of b jet identification are determined from data. The measured [Formula: see text] cross section is [Formula: see text]. This measurement is compared with an analysis of 7[Formula: see text] data, corresponding to an integrated luminosity of 5.0[Formula: see text], to determine the ratio of 8[Formula: see text] to 7[Formula: see text] cross sections, which is found to be [Formula: see text]. The measurements are in agreement with QCD predictions up to next-to-next-to-leading order.
A measurement of the forward-backward asymmetry [Formula: see text] of oppositely charged lepton pairs ([Formula: see text] and [Formula: see text]) produced via [Formula: see text] boson exchange in pp collisions at [Formula: see text] [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 19.7[Formula: see text] collected with the CMS detector at the LHC. The measurement of [Formula: see text] is performed for dilepton masses between 40[Formula: see text] and 2[Formula: see text] and for dilepton rapidity up to 5. The [Formula: see text] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
A measurement is presented of differential cross sections for t-channel single top quark and antiquark production in proton-proton collisions at a centre-of-mass energy of 13 Te by the CMS experiment at the LHC. From a data set corresponding to an integrated luminosity of 35.9 fb - 1 , events containing one muon or electron and two or three jets are analysed. The cross section is measured as a function of the top quark transverse momentum ( p T ), rapidity, and polarisation angle, the charged lepton p T and rapidity, and the p T of the W boson from the top quark decay. In addition, the charge ratio is measured differentially as a function of the top quark, charged lepton, and W boson kinematic observables. The results are found to be in agreement with standard model predictions using various next-to-leading-order event generators and sets of parton distribution functions. Additionally, the spin asymmetry, sensitive to the top quark polarisation, is determined from the differential distribution of the polarisation angle at parton level to be 0.440 ± 0.070 , in agreement with the standard model prediction.
Measurements of the associated production of a Z boson with at least one jet originating from a b quark in proton-proton collisions at
s
= 8
TeV
are presented. Differential cross sections are measured with data collected by the CMS experiment corresponding to an integrated luminosity of 19.8
fb
- 1
. Z bosons are reconstructed through their decays to electrons and muons. Cross sections are measured as a function of observables characterizing the kinematics of the b jet and the Z boson. Ratios of differential cross sections for the associated production with at least one b jet to the associated production with any jet are also presented. The production of a Z boson with at least two b jets is investigated, and differential cross sections are measured for the dijet system. Results are compared to theoretical predictions, testing two different flavour schemes for the choice of initial-state partons.