Displaying publications 161 - 180 of 284 in total

Abstract:
Sort:
  1. Yong GY, Muniandy N, Beishenaliev A, Lau BF, Kue CS
    J Ethnopharmacol, 2024 Apr 16;331:118213.
    PMID: 38636576 DOI: 10.1016/j.jep.2024.118213
    ETHNOPHARMACOLOGICAL RELEVANCE: The sclerotium of Lignosus rhinocerus (Cooke) Ryvarden is used by the local communities in Southeast Asia and China to treat cancer, asthma, fever, and other ailments based on traditional knowledge. The sclerotial water extracts were previously reported to exhibit cytotoxic, apoptotic, and immunomodulatory activities - providing a scientific basis for its use in treating cancer; however, there is still a lack of evidence on its potential anti-angiogenic activity.

    AIM OF THE STUDY: This study aimed to investigate the toxicity, anti-angiogenic, and anti-tumour activities of the hot-water and cold-water extracts of L. rhinocerus using HCT116 human colorectal carcinoma cells implanted in the chick chorioallantoic membrane (CAM) model.

    MATERIALS AND METHODS: The toxicity of L. rhinocerus extracts towards the chick embryos was determined 24 h post-treatment. The anti-angiogenic activity of the extracts was then investigated at 0.1-10 μg/embryo (6.7-670 μg/mL) at targeted blood vessels. The anti-tumour effect of selected extracts against the HCT116 human colorectal carcinoma cells xenografted onto the chick embryos was also studied.

    RESULTS: The cold-water extracts of L. rhinocerus displayed strong in ovo toxicity (LC50: 1.2-37.7 μg/mL) while the hot-water extracts are non-toxic up to 670 μg/mL. Among the extracts, the hot-water extracts demonstrated the highest anti-angiogenic activity with 44.0 ± 17.7% reduction of capillary diameter (relative to the saline-treated control). Moreover, treatment of the HCT116 cells xenografted onto the chick embryos with the hot-water extracts resulted in smaller tumour size and lower number of blood vessels compared to the saline-treated control.

    CONCLUSIONS: The hot-water extracts of L. rhinocerus sclerotium demonstrated anti-angiogenic and anti-tumour activities but most of the cold-water extracts at similar concentrations were devoid of that. Our findings provide further scientific validation of the medicinal use of the sclerotium in treating cancer and thus, expanding our knowledge on the possible mechanism of its anti-cancer effect apart from direct cytotoxicity, induction of apoptosis and immunomodulation that have been studied thus far.

  2. Wu Q, Patocka J, Nepovimova E, Kuca K
    J Ethnopharmacol, 2019 Apr 24;234:197-203.
    PMID: 30695706 DOI: 10.1016/j.jep.2019.01.022
    ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha gossypiifolia L. (Euphorbiaceae) is popularly known as bellyache bush or black physic nut and is widely used in local / traditional medicine due to the various biological activities attributed to its different parts, including its leaves, roots, and latex.

    AIM OF THE STUDY: In this review, we aim to update and discuss the chemistry, specific pharmacology, and toxicological activities of Jatropha gossypiifolia and its bioactive metabolites.

    MATERIALS AND METHODS: The Web of Science, PubMed, Google Scholar, SciFinder, Cochrane Library, Scopus, and Science Direct databases were searched with the name "Jatropha gossypiifolia" and the term "bioactive metabolites". All studies on the chemistry, pharmacology, and toxicology of the plant up to December 2018 were included in this review.

    RESULTS: Jatropha gossypiifolia leaves are considered to have anti-inflammatory, antimicrobial and insecticidal properties. The root and stem have anti-inflammatory and antimicrobial properties. The seeds and fruits can be used against influenza and as a sedative, analgesic or anti-diarrheal agents. The latex is bactericidal and molluscicidal. Topical application of latex is used to treat wounds and bites of venomous animals. The diluted form is usually used for the treatment of diarrhoea by indigenous peoples.

    CONCLUSIONS: The main pharmacological activities of Jatropha gossypiifolia include anti-inflammatory, antineoplastic, antimicrobial, antioxidant, and anticholinesterase, and antihypertensive activities. Species of Jatropha are notably known for their toxic potential, and their toxicity is primarily related to the latex and seed contents. However, the potential mechanisms of these pharmacological activities have not been fully explored. We hope this review will help to further inform the potential utilization of Jatropha gossypiifolia in complementary and alternative medicine.

  3. Siew YY, Yew HC, Neo SY, Seow SV, Lew SM, Lim SW, et al.
    J Ethnopharmacol, 2019 May 10;235:75-87.
    PMID: 30599223 DOI: 10.1016/j.jep.2018.12.040
    ETHNOPHARMACOLOGICAL RELEVANCE: The extensive biodiversity of plants in Southeast Asia and inadequate research hitherto warrant a continued investigation into medicinal plants. On the basis of a careful review of fresh medicinal plant usage to treat cancer from previous ethnobotanical interviews in Singapore and from the traditional uses of the indigenous plants, fresh leaves of seven locally grown medicinal plant species were evaluated for anti-proliferative activity.

    AIM OF THE STUDY: To evaluate the anti-proliferative activity of local medicinal plant species Clausena lansium Skeels, Clinacanthus nutans (Burm. f.) Lindau, Leea indica (Burm. f.) Merr., Pereskia bleo (Kunth) DC., Strobilanthes crispus (L.) Blume, Vernonia amygdalina Delile and Vitex trifolia L.

    MATERIALS AND METHOD: Fresh, healthy and mature leaves of the seven medicinal plants were harvested from various locations in Singapore and Malaysia for Soxhlet, ultrasonication and maceration extractions in three different solvents (water, ethanol and methanol). Cell proliferation assay using water soluble tetrazolium salt (WST-1) assay was performed on twelve human cancer cell lines derived from breast (MDA-MB-231, T47D), cervical (C33A), colon (HCT116), leukemia (U937), liver (HepG2, SNU-182, SNU-449), ovarian (OVCAR-5, PA-1, SK-OV-3) and uterine (MES-SA/DX5) cancer.

    RESULTS: A total of 37 fresh leaf extracts from seven medicinal plants were evaluated for their anti-tumour activities in twelve human cancer cell lines. Of these, the extracts of C. lansium, L. indica, P. bleo, S. crispus, V. amygdalina and V. trifolia exhibited promising anti-proliferative activity against multiple cancer cell lines. Further investigation of selected promising leaf extracts indicated that maceration methanolic extract of L. indica was most effective overall against majority of the cancer cell lines, with best IC50 values of 31.5 ± 11.4 µg/mL, 37.5 ± 0.7 µg/mL and 43.0 ± 6.2 µg/mL in cervical C33A, liver SNU-449, and ovarian PA-1 cancer cell lines, respectively.

    CONCLUSION: The results of this study provide new scientific evidence for the traditional use of local medicinal plant species C. lansium, L . indica, P. bleo, S. crispus, V. amygdalina and V. trifolia in cancer treatment. These results highlight the importance of the upkeep of these indigenous plants in modern society and their relevance as resources for drug discovery.

  4. Kaur J, Famta P, Famta M, Mehta M, Satija S, Sharma N, et al.
    J Ethnopharmacol, 2021 Mar 25;268:113565.
    PMID: 33166627 DOI: 10.1016/j.jep.2020.113565
    ETHNOPHARMACOLOGICAL RELEVANCE: Epilepsy is one of the most commonly occurring non-communicable neurological disorder that affects people of all age groups. Around 50 million people globally are epileptic, with 80% cases in developing countries due to lack of access to treatments determined by high cost and poor availability or it can be defined by the fraction of active epileptic patients who are not appropriately being treated. The availability of antiepileptic drugs and their adjuvant therapy in such countries is less than 50% and these are highly susceptible to drug interactions and severe adverse effects. As a result, the use of herbal medicine is increasingly becoming popular.

    AIM OF THE STUDY: To provide pharmacological information on the active constituents evaluated in the preclinical study to treat epilepsy with potential to be used as an alternative therapeutic option in future. It also provides affirmation for the development of novel antiepileptic drugs derived from medicinal plants.

    MATERIALS AND METHODS: Relevant information on the antiepileptic potential of phytoconstituents in the preclinical study (in-vitro, in-vivo) is provided based on their effect on screening parameters. Besides, relevant information on pharmacology of phytoconstituents, the traditional use of their medicinal plants related to epilepsy and status of phytoconstituents in the clinical study were derived from online databases, including PubMed, Clinicaltrial. gov, The Plant List (TPL, www.theplantlist.org), Science Direct. Articles identified using preset searching syntax and inclusion criteria are presented.

    RESULTS: More than 70% of the phytoconstituents reviewed in this paper justified the traditional use of their medicinal plant related to epilepsy by primarily acting on the GABAergic system. Amongst the phytoconstituents, only cannabidiol and tetrahydrocannabinol have been explored for clinical application in epilepsy.

    CONCLUSION: The preclinical and clinical data of the phytoconstituents to treat epilepsy and its associated comorbidities provides evidence for the discovery and development of novel antiepileptic drugs from medicinal plants. In terms of efficacy and safety, further randomized and controlled clinical studies are required to understand the complete pharmacodynamic and pharmacokinetic picture of phytoconstituents. Also, specific botanical source evaluation is needed.

  5. Zaridah MZ, Idid SZ, Omar AW, Khozirah S
    J Ethnopharmacol, 2001 Nov;78(1):79-84.
    PMID: 11585692
    Five aqueous extracts from three plant species, i.e., dried husks (HX), dried seeds (SX) and dried leaves (LX) of Xylocarpus granatum (Meliaceae), dried stems (ST) of Tinospora crispa (Menispermaceae) and dried leaves (LA) of Andrographis paniculata (Acanthaceae) were tested in vitro against adult worms of subperiodic Brugia malayi. The relative movability (RM) value of the adult worms over the 24-h observation period was used as a measure of the antifilarial activity of the aqueous extracts. SX extract of X. granatum demonstrated the strongest activity, followed by the LA extract of A. paniculata, ST extract of T. crispa, HX extract and LX extract of X. granatum.
  6. Zuhri UM, Yuliana ND, Fadilah F, Erlina L, Purwaningsih EH, Khatib A
    J Ethnopharmacol, 2024 Jan 30;319(Pt 3):117296.
    PMID: 37820996 DOI: 10.1016/j.jep.2023.117296
    ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure.

    AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation.

    MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools.

    RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds.

    CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.

  7. Butt MA, Ahmad M, Fatima A, Sultana S, Zafar M, Yaseen G, et al.
    J Ethnopharmacol, 2015 Jun 20;168:164-81.
    PMID: 25818693 DOI: 10.1016/j.jep.2015.03.045
    Medicinal plants represent one of the most accessible resources available for snake and scorpion bite among the rural communities of Northern Pakistan. This first ethno-botanical study aimed to document the indigenous knowledge and practices of using plants for snake and scorpion bite disorders in Northern Pakistan.
  8. Chan CK, Supriady H, Goh BH, Kadir HA
    J Ethnopharmacol, 2015 Jun 20;168:291-304.
    PMID: 25861953 DOI: 10.1016/j.jep.2015.03.072
    Elephantopus scaber also known as Elephant's foot (Asteraceae family) has a plethora of traditional applications including dysuria, diarrhea, dysentery, leukemia and cancer. This study aimed to investigate the apoptosis inducing effects of E. scaber and the underlying mechanisms in HCT116 colorectal cell line.
  9. Hidayat AFA, Chan CK, Mohamad J, Kadir HA
    J Ethnopharmacol, 2018 Nov 15;226:120-131.
    PMID: 30118836 DOI: 10.1016/j.jep.2018.08.020
    ETHNOPHARMACOLOGICAL IMPORTANCE: Leptospermum flavescens has been used traditionally in Malaysia to treat various ailments such as constipation, hypertension, diabetes and cancer.

    AIM OF STUDY: To investigate the potential protective effects of L. flavescens in pancreatic β cells through inhibition of apoptosis and autophagy cell death mechanisms in in vitro and in vivo models.

    MATERIALS AND METHODS: L. flavescens leaves were extracted using solvent in increasing polarities: hexane, ethyl acetate, methanol and water. All extracts were tested for INS-1 β cells viability stimulated by streptozotocin (STZ). The extract which promotes the highest cell protective activity was further evaluated for insulin secretion, apoptosis and autophagy signaling pathways. Then, the acute toxicity of extract was carried out in SD rats according to OECD 423 guideline. The active extract was tested in diabetic rats where the pancreatic β islets were evaluated for insulin, apoptosis and autophagy protein.

    RESULTS: The methanolic extract of L. flavescens (MELF) was found to increase INS-1 β cells viability and insulin secretion against STZ. In addition, MELF has been shown to inhibit INS-1 β cells apoptosis and autophagy activity. Notably, there was no toxicity observed in SD rats when administered with MELF. Furthermore, MELF exhibited anti-hyperglycemic activity in diabetic rats where apoptosis and autophagy protein expression was found to be suppressed in pancreatic β islets.

    CONCLUSION: MELF was found to protect pancreatic β cells function from STZ-induced apoptosis and autophagy in in vitro and in vivo.

  10. Wang R, Ren Q, Gao D, Paudel YN, Li X, Wang L, et al.
    J Ethnopharmacol, 2022 Jan 29;289:115018.
    PMID: 35092824 DOI: 10.1016/j.jep.2022.115018
    ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (G. elata), a traditional Chinese herb, known as "Tian Ma", is widely used as a common medicine and diet ingredient for treating or preventing neurological disorders for thousands of years in China. However, the anti-depressant effect of G. elata and the underlying mechanism have not been fully evaluated.

    AIM OF THE STUDY: The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively.

    MATERIAL AND METHODS: Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes.

    RESULTS: G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes.

    CONCLUSION: Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.

  11. Nandini C, Madhunapantula SV, Bovilla VR, Ali M, Mruthunjaya K, Santhepete MN, et al.
    J Ethnopharmacol, 2021 Jul 15;275:114074.
    PMID: 33831466 DOI: 10.1016/j.jep.2021.114074
    ETHNOPHARMACOLOGICAL RELEVANCE: Carica papaya leaf juice/decoction has been in use in folk medicine in Srilanka, Malaysia and in few parts of India for enhancing the platelet counts in dengue. In Siddha medicine, a traditional form of medicine in India, papaya leaf juice has been used for increasing the platelet counts. Papaya leaf has been reported to enhance blood volume in ancient Ayurveda books in India. Carica papaya leaf is well known for its platelet enhancement activity. Although many preclinical and clinical studies have demonstrated the ability of papaya leaf juice for platelet enhancement, but the underlying mechanisms are still unclear.

    AIM OF THE STUDY: The study is aimed at identifying the key ingredients of papaya leaf extract and elucidate the mechanism (s) of action of the identified potent component in mitigating thrombocytopenia (Thp).

    MATERIALS AND METHODS: C. papaya leaf juice was subjected for sequential fractionation to identify the anti-thrombocytopenic phytochemicals. In vivo, stable thrombocytopenia was induced by subcutaneous injection of 70 mg/kg cyclophosphamide (Cyp). After induction, rats were treated with 200 and 400 mg/kg body weight papaya leaf juice and with identified fractions for 14 days. Serum thrombopoietin level was estimated using ELISA. CD110/cMpl, a receptor for thrombopoietin on platelets was measured by western blotting.

    RESULTS: Administration of cyclophosphamide for 6 days induced thrombocytopenia (210.4 ± 14.2 × 103 cells/μL) in rats. Treating thrombocytopenic rats with papaya leaf juice and butanol fraction for 14 days significantly increased the platelet count to 1073.50 ± 29.6 and 1189.80 ± 36.5 × 103 cells/μL, respectively. C.papaya extracts normalized the elevated bleeding and clotting time and decreased oxidative markers by increasing endogenous antioxidants. A marginal increase in the serum thrombopoietin (TPO) level was observed in Cyp treated group compared to normal and treatment groups. Low expression of CD110/cMpl receptor found in Cyp treated group was enhanced by C. papaya extracts (CPJ) and CPJ-BT. Furthermore, examination of the morphology of bone marrow megakaryocytes, histopathology of liver and kidneys revealed the ability of CPJ and fractions in mitigating Cyp-induced thrombocytopenia in rats.

    CONCLUSION: C. papaya leaf juice enhances the platelet count in chemotherapy-induced thrombocytopenia by increasing the expression of CD110 receptor on the megakaryocytes. Hence, activating CD110 receptor might be a viable strategy to increase the platelet production in individuals suffering from thrombocytopenia.

  12. Sundara Rajoo K, Lepun P, Alan R, Singh Karam D, Abdu A, Rosli Z, et al.
    J Ethnopharmacol, 2023 Jan 30;301:115780.
    PMID: 36202163 DOI: 10.1016/j.jep.2022.115780
    ETHNOPHARMACOLOGICAL RELEVANCE: Sarawak is located in one of the world's most biodiverse regions and is home to more than 40 sub-ethnic groups that each have their own distinct culture, language and lifestyle. This has given rise to numerous, unique ethnobotanical systems. However, due to rapid urbanization, this traditional knowledge is at a risk of extinction. Yet, ethnobotanical studies in Sarawak are almost non-existent, especially among Orang Ulu communities like the Kenyah.

    AIM OF STUDY: Therefore, this study was conducted to document the ethnomedicinal knowledge of the Kenyah community. The main objectives of this study are: 1) To determine and document the diversity of medicinal plants used by the Kenyah community, 2) To determine whether the availability of modern medicine has affected Kenyah traditional medicine, and 3) To identify plants which have not been previously cited or used for previously unreported medical uses.

    MATERIALS AND METHODS: We conducted repeated interviews and field surveys at the Asap-Koyan Resettlement Area, Belaga Sarawak. A total of 24 respondents from four Kenyah longhouses were interviewed in this study. Individuals possessing extensive traditional medicinal knowledge were identified via preliminary interviews or by viva voce. Translators were employed to ensure that there was no miscommunication. The results were evaluated based on the plant's total use-reports and number of respondents citing the plant. The data was also evaluated based on use-reports by ailment category.

    RESULTS: Over 95% of the respondents were 40 years and older (58.21 years old ± 11.21). This was due to the younger members of the community (40 years old and below) admitting that they had almost no knowledge regarding traditional medicine, as they preferred relying on modern medicine. A total of 61 plant species were mentioned by the 24 respondents Seven plants had five or more respondents citing it, which was more than 20% of the respondents. These plants were Piper betle, Homalomena cordata, Senna alata, Annona muricata, Derris elliptica, Blumea balsamifera and Coscinium fenestratum.

    CONCLUSION: Almost all of the cited plants had been previously recorded to be used in either Ayurvedic, Chinese herbal medicine, Malay traditional medicine or other Asian ethnomedicinal systems. However, there were four highly cited species that were used for treatments that were scarcely reported in past literature. These were piper betle (used by Kenyah to treat fever), Sauropus andrognus (used by Kenyah to treat fever), Derris elliptica (used by Kenyah to treat fever and influenza) and Coscinuim fenestratum (used by Kenyah to treat toxic effects from non-medical substances).

  13. Zakaria ZA, Balan T, Suppaiah V, Ahmad S, Jamaludin F
    J Ethnopharmacol, 2014 Feb 12;151(3):1184-1193.
    PMID: 24380736 DOI: 10.1016/j.jep.2013.12.045
    ETHNOPHARMACOLOGICAL RELEVANCE: Muntingia calabura L. (Muntingiaceae) is locally known as kerukup siam. Its leaves, flowers, barks and roots have been used traditionally in East Asia and South America to treat various diseases including ulcer-related diseases. The present study aimed to investigate the mechanism(s) of gastroprotective effect of methanol extract of Muntingia calabura leaves (MEMC) using the pylorus ligation induced gastric ulceration in rats.

    MATERIALS AND METHODS: Five groups of rats (n=6) were administered orally once daily for 7 days with 8% Tween 80 (negative control), 100 mg/kg ranitidine (positive control), or MEMC (100, 250 or 500 mg/kg), followed by the ulcer induction via ligation of the pyloric part of the rat's stomach. This was followed by the macroscopic analysis of the stomach, evaluation of gastric content parameters, and quantification of mucus content. The antioxidant (measured using the superoxide anion and 2,2-diphenyl-1-picrylhydrazyl (DPPH)-radical scavenging, oxygen radical absorbance capacity (ORAC) and total phenolic content (TPC) assays), anti-inflammatory (evaluated using the in vitro lipoxygenase and xanthine oxidase assays), phytoconstituents and HPLC analysis of MEMC were also carried out.

    RESULTS: The MEMC significantly (p<0.05) reduced gastric lesion in this model. Furthermore, the extract also significantly (p<0.01) reduced the volume of gastric content whereas the total acidity was significantly (p<0.05) reduced in the doses of 100 and 500 mg/kg MEMC. Moreover, the mucus content increased significantly (p<0.01) in MEMC-treated rats. The extract also showed high antioxidant and anti-inflammatory activities in all assays tested, and demonstrated the presence of high tannins and saponins followed by flavonoids.

    CONCLUSION: The MEMC exerted gastroprotective effect via several mechanisms including the anti-secretory, antioxidant and anti-inflammatory activities. These activities could be attributed to the presence of tannins, saponins and flavonoids (e.g. rutin, quercitrin, fisetin and dihydroquercetin).

  14. Dey YN, Wanjari MM, Kumar D, Lomash V, Jadhav AD
    J Ethnopharmacol, 2016 Nov 04;192:183-191.
    PMID: 27426509 DOI: 10.1016/j.jep.2016.07.042
    ETHNOPHARMACOLOGICAL RELEVANCE: Amorphophallus paeoniifolius (Dennst.) Nicolson (Family- Araceae) is a crop of south East Asian origin. In India, its tuber is widely used in ethnomedicinal practices by different tribes for the treatment of piles (hemorrhoids).

    AIM: The present study evaluated the effect of methanolic and aqueous extract of Amorphophallus paeoniifolius tuber on croton oil induced hemorrhoids in rats.

    MATERIALS AND METHODS: The methanolic extract was standardized with the major phenolic compound, betulinic acid, by HPLC. The hemorrhoids were induced by applying 6% croton oil preparation in the ano-rectal region. Rats were orally administered methanolic and aqueous extract at doses of 250 and 500mg/kg, each for 7 days. Pilex (200mg/kg) was used as reference anti-hemorrhoidal drug. Hemorrhoids were assessed on eighth day by measuring hemorrhoidal and biochemical parameters along with histology of ano-rectal tissue.

    RESULTS: Croton oil application caused induction of hemorrhoids as indicated by significant (p<0.001) increase in plasma exudation of Evans blue in ano-rectal tissue, macroscopic severity score and ano-rectal coefficient as compared to normal rats. It significantly (p<0.001) elevated lactate dehydrogenase and cytokines (TNF-α and IL-6) levels in serum and increased myeloperoxidase activity and lipid peroxidation in ano-rectal tissue along with marked histological damage as compared to normal rats. Treatment with tuber extracts and pilex significantly (p<0.05-p<0.001) ameliorated Evans blue exudation, hemorrhoidal parameters and other biochemical parameters with attenuation of tissue damage compared to hemorrhoid control rats. The results indicate that tuber extracts exhibited curative action on hemorrhoids. The aqueous extract showed more pronounced effect than methanolic extract. The effects may be attributed to anti-inflammatory and antioxidant properties.

    CONCLUSION: Results indicate that tuber of Amorphophallus paeoniifolius exhibited curative action on hemorrhoids through anti-inflammatory and antioxidant properties. The study validates the ethnomedicinal use of tuber in hemorrhoids and implicates its therapeutic potential as an anti-hemorrhoidal agent.

  15. Chan KL, Choo CY, Abdullah NR, Ismail Z
    J Ethnopharmacol, 2004 Jun;92(2-3):223-7.
    PMID: 15138004 DOI: 10.1016/j.jep.2004.02.025
    The roots of Eurycoma longifolia Jack have been used as traditional medicine to treat malaria. A systematic bioactivity-guided fractionation of this plant was conducted involving the determination of the effect of its various extracts and their chemical constituents on the lactate dehydrogenase activity of in vitro chloroquine-resistant Gombak A isolate and chloroquine-sensitive D10 strain of Plasmodium falciparum parasites. Their antiplasmodial activity was also compared with their known in vitro cytotoxicity against KB cells. Four quassinoids, eurycomanone (1), 13,21-dihydroeurycomanone (3), 13 alpha(21)-epoxyeurycomanone (4), eurycomalactone (6) and an alkaloid, 9-methoxycanthin-6-one (7), displayed higher antiplasmodial activity against Gombak A isolate but were less active against the D10 strain when compared with chloroquine. Amongst the compounds tested, 1 and 3 showed higher selectivity indices obtained for the cytotoxicity to antiplasmodial activity ratio than 14,15 beta-dihydroxyklaineanone (2), eurycomanol (5), 6 and 7.
  16. Kaharudin FA, Zohdi RM, Mukhtar SM, Sidek HM, Bihud NV, Rasol NE, et al.
    J Ethnopharmacol, 2020 May 23;254:112657.
    PMID: 32045683 DOI: 10.1016/j.jep.2020.112657
    ETHNOPHARMACOLOGICAL RELEVANCE: Malaria, a devastating infectious disease which was initially recognized as episodic fever, is caused by parasitic protozoan of the genus Plasmodium. Medicinal plants with ethnobotanical information to treat fever and/or malaria has been the key element in identifying potential plant candidates for antimalarial screening. Goniothalamus lanceolatus Miq. (Annonaceae) is used as a folk remedy, particularly to treat fever and skin diseases.

    AIM OF THE STUDY: In this context, supported with previous preliminary data of its antiplasmodial activity, this study was undertaken to determine the in vitro antiplasmodial and cytotoxicity activities of G. lanceolatus crude extracts and its major compounds.

    MATERIALS AND METHODS: The in vitro antiplasmodial activity was determined by parasite lactate dehydrogenase (pLDH) assay on chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The cytotoxicity activity was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on hepatocellular carcinoma (HepG2) and normal liver (WRL-68) cell lines.

    RESULTS: The root methanol extract possessed potent antiplasmodial activity against both P. falciparum 3D7 and K1 strains (IC50 = 2.7 μg/ml, SI = 140; IC50 = 1.7 μg/ml, SI = 236). Apart from the DCM extract of stem bark and root that were found to be inactive (IC50 > 50 μg/ml) against 3D7 strain, all other tested crude extracts exhibited promising (5< IC50  30 µg/ml, CC50 > 10 µM, respectively), except for the hexane and DCM extracts of root, which exerted mild cytotoxicity on HepG2 cell line (IC50 

  17. Armania N, Yazan LS, Musa SN, Ismail IS, Foo JB, Chan KW, et al.
    J Ethnopharmacol, 2013 Mar 27;146(2):525-35.
    PMID: 23353897 DOI: 10.1016/j.jep.2013.01.017
    Dillenia suffruticosa (Family: Dilleniaceae) locally known as Simpoh air has been reported to be used traditionally to treat cancerous growth. Therefore, the present study was attempted to investigate the antioxidant and cytotoxic properties of different parts (root, flower, fruit and leaf) of D. suffruticosa extracts.
  18. Hong X, Ajat M, Fakurazi S, Noor AM, Ismail IS
    J Ethnopharmacol, 2021 Mar 25;268:113647.
    PMID: 33271242 DOI: 10.1016/j.jep.2020.113647
    ETHNOPHARMACOLOGICAL RELEVANCE: Scurrula ferruginea (Jack) Danser (locally known as 'Dedalu' or 'dian nan ji sheng' in Malaysia and China) is a hemi-parasitic shrub that is widely used as herbal medicine to treat inflammation, rheumatism, and stroke. However, the scientific basis of its anti-inflammatory function and mechanism remain to be proven.

    AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans.

    MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1β, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1β, and TNF-α mRNA expression.

    RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1β protein production along with the down regulation of iNOS and IL-1β mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 μg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α.

    CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1β mRNA expression, NO creation, IL-1β, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.

  19. Waziri PM, Abdullah R, Yeap SK, Omar AR, Abdul AB, Kassim NK, et al.
    J Ethnopharmacol, 2016 Dec 24;194:549-558.
    PMID: 27729282 DOI: 10.1016/j.jep.2016.10.030
    ETHNOPHARMACOLOGICAL RELEVANCE: Clausena excavata Burm.f. is used locally in folk medicine for the treatment of cancer in South East Asia.

    AIM OF THE STUDY: To determine the mechanism of action of pure clausenidin crystals in the induction of hepatocellular carcinoma (hepG2) cells apoptosis.

    MATERIALS AND METHODS: Pure clausenidin was isolated from Clausena excavata Burm.f. and characterized using (1)H and (13)C NMR spectra. Clausenidin-induced cytotoxicity was determined by MTT assay. The morphology of hepG2 after treatment with clausenidin was determined by fluorescence and Scanning Electron Microscopy. The effect of clausenidin on the apoptotic genes and proteins were determined by real-time qPCR and protein array profiling, respectively. The involvement of the mitochondria in clausenidin-induced apoptosis was investigated using MMP, caspase 3 and 9 assays.

    RESULTS: Clausenidin induced significant (p<0.05) and dose-dependent apoptosis of hepG2 cells. Cell cycle assay showed that clausenidin induced a G2/M phase arrest, caused mitochondrial membrane depolarization and significantly (p<0.05) increased expression of caspases 3 and 9, which suggest the involvement of the mitochondria in the apoptotic signals. In addition, clausenidin caused decreased expression of the anti-apoptotic protein, Bcl 2 and increased expression of the pro-apoptotic protein, Bax. This finding was confirmed by the downregulation of Bcl-2 gene and upregulation of the Bax gene in the treated hepG2 cells.

    CONCLUSION: Clausenidin extracted from Clausena excavata Burm.f. is an anti-hepG2 cell compound as shown by its ability to induce apoptosis through the mitochondrial pathway of apoptosis. Clausenidin can potentially be developed into an anticancer compound.

  20. Haghani A, Mehrbod P, Safi N, Aminuddin NA, Bahadoran A, Omar AR, et al.
    J Ethnopharmacol, 2016 Jun 5;185:327-40.
    PMID: 26976767 DOI: 10.1016/j.jep.2016.03.020
    For centuries, Edible Bird Nest (EBN) has been used in treatment of variety of respiratory diseases such as flu and cough as a Chinese natural medicine.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links