Displaying publications 161 - 180 of 291 in total

Abstract:
Sort:
  1. Kek HY, Tan H, Othman MHD, Nyakuma BB, Ho WS, Sheng DDCV, et al.
    Environ Res, 2024 Mar 15;245:118055.
    PMID: 38154562 DOI: 10.1016/j.envres.2023.118055
    Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 μm), and comprehensive human exposure risk assessments.
    Matched MeSH terms: Environmental Monitoring/methods
  2. Chahban M, Akodad M, Skalli A, Gueddari H, El Yousfi Y, Ait Hmeid H, et al.
    Environ Res, 2024 Mar 01;244:117939.
    PMID: 38128604 DOI: 10.1016/j.envres.2023.117939
    The Guerouaou aquifer investigation spanning 280 km2 in Ain Zohra yields promising outcomes, instilling optimism for regional water quality. These analyses were applied to 45 sampling instances from 43 wells, enabling a comprehensive water quality assessment. Groundwater conductivity ranged from medium to high, peaking at 18360 ms/cm2. The conductivity reveals insights about the groundwater's mineralization. Key physiochemical parameters fell within desirable thresholds, bolstering the positive perspective. HCO3- levels spanned 82-420 mg/L, while chloride content ranged from 38 to 5316 mg/L, benefiting water quality. NO3- ions, vital for gauging pollution, ranged from 0 to 260 mg/L, indicating favorable results. Cation concentrations exhibited encouraging variations: Ca2+- 24 to 647 mg/L, Mg2+- 12 to 440 mg/L, Na+- 18 to 2722 mg/L, K+- 1.75 to 28.65 mg/L. These collectively favor water quality. Halite breakdown dominated mineralization, as evidenced by the prevalence of Na-Cl-Na-SO4 facies. Water resource management and local communities need effective management and mitigation strategies to prevent saltwater intrusion.
    Matched MeSH terms: Environmental Monitoring/methods
  3. Vadrevu KP, Lasko K, Giglio L, Justice C
    Environ Pollut, 2014 Dec;195:245-56.
    PMID: 25087199 DOI: 10.1016/j.envpol.2014.06.017
    In this study, we assess the intense pollution episode of June 2013, in Riau province, Indonesia from land clearing. We relied on satellite retrievals of aerosols and Carbon monoxide (CO) due to lack of ground measurements. We used both the yearly and daily data for aerosol optical depth (AOD), fine mode fraction (FMF), aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI) for characterizing variations. We found significant enhancement in aerosols and CO during the pollution episode. Compared to mean (2008-2012) June AOD of 0.40, FMF-0.39, AAOD-0.45, UVAI-1.77 and CO of 200 ppbv, June 2013 values reached 0.8, 0.573, 0.672, 1.77 and 978 ppbv respectively. Correlations of fire counts with AAOD and UVAI were stronger compared to AOD and FMF. Results from a trajectory model suggested transport of air masses from Indonesia towards Malaysia, Singapore and southern Thailand. Our results highlight satellite-based mapping and monitoring of pollution episodes in Southeast Asia.
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Ishii S, Bell JN, Marshall FM
    Environ Pollut, 2007 Nov;150(2):267-79.
    PMID: 17379364
    The phytotoxic risk of ambient air pollution to local vegetation was assessed in Selangor State, Malaysia. The AOT40 value was calculated by means of the continuously monitored daily maximum concentration and the local diurnal pattern of O3. Together with minor risks associated with the levels of NO2 and SO2, the study found that the monthly AOT40 values in these peri-urban sites were consistently over 1.0 ppm.h, which is well in exceedance of the given European critical level. Linking the O3 level to actual agricultural crop production in Selangor State also indicated that the extent of yield losses could have ranged from 1.6 to 5.0% (by weight) in 2000. Despite a number of uncertainties, the study showed a simple but useful methodological framework for phytotoxic risk assessment with a limited data set, which could contribute to appropriate policy discussion and countermeasures in countries under similar conditions.
    Matched MeSH terms: Environmental Monitoring/methods
  5. Chang KF, Fang GC, Chen JC, Wu YS
    Environ Pollut, 2006 Aug;142(3):388-96.
    PMID: 16343719
    Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia.
    Matched MeSH terms: Environmental Monitoring/methods*
  6. Sudaryanto A, Takahashi S, Iwata H, Tanabe S, Ismail A
    Environ Pollut, 2004 Aug;130(3):347-58.
    PMID: 15182968
    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.
    Matched MeSH terms: Environmental Monitoring/methods
  7. Ismail NAH, Wee SY, Kamarulzaman NH, Aris AZ
    Environ Pollut, 2019 Jun;249:1019-1028.
    PMID: 31146308 DOI: 10.1016/j.envpol.2019.03.089
    Emerging pollutants known as endocrine-disrupting compounds (EDCs) are a contemporary global issue, especially in aquatic ecosystems. As aquaculture production through mariculture activities in Malaysia supports food production, the concentration and distribution of EDCs in estuarine water ecosystems may have changed. Therefore, this current study aims to prepare a suitable and reliable method for application on environmental samples. Besides, this study also presented the occurrence of EDCs pollutant in Pulau Kukup, Johor, where the biggest and most active mariculture site in Malaysia takes place. Analytical methods based on a combination of solid-phase extraction with liquid chromatography tandem mass spectrometry (Solid-phase extraction (SPE)-LC-MS/MS) have been modified and optimised to examine the level of targeted EDCs contaminant. In the current study, this method displays high extraction recovery for targeted EDCs, ranging from 92.02% to 132.32%. The highest concentration detected is diclofenac (<0.47-79.89 ng/L) followed by 17β-estradiol (E2) (<5.28-31.43 ng/L) and 17α-ethynylestradiol (EE2) (<0.30-7.67 ng/L). The highest percentage distribution for the targeted EDCs in the current study is diclofenac, followed by EE2 and dexamethasone with the percentages of 99.44%, 89.53% and 73.23%, respectively. This current study can be a baseline assessment to understand the pollution profile of EDCs and their distribution in the estuarine water of the mariculture site throughout the world, especially in Malaysia. Owing to the significant concentration of targeted EDCs detected in water samples, the need for further monitoring in the future is required.
    Matched MeSH terms: Environmental Monitoring/methods*
  8. Nguyen TTN, Pham HV, Lasko K, Bui MT, Laffly D, Jourdan A, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113106.
    PMID: 31541826 DOI: 10.1016/j.envpol.2019.113106
    Satellite observations for regional air quality assessment rely on comprehensive spatial coverage, and daily monitoring with reliable, cloud-free data quality. We investigated spatiotemporal variation and data quality of two global satellite Aerosol Optical Depth (AOD) products derived from MODIS and VIIRS imagery. AOD is considered an essential atmospheric parameter strongly related to ground Particulate Matter (PM) in Southeast Asia (SEA). We analyze seasonal variation, urban/rural area influence, and biomass burning effects on atmospheric pollution. Validation indicated a strong relationship between AERONET ground AOD and both MODIS AOD (R2 = 0.81) and VIIRS AOD (R2 = 0.68). The monthly variation of satellite AOD and AERONET AOD reflects two seasonal trends of air quality separately for mainland countries including Myanmar, Laos, Cambodia, Thailand, Vietnam, and Taiwan, Hong Kong, and for maritime countries consisting of Indonesia, Philippines, Malaysia, Brunei, Singapore, and Timor Leste. The mainland SEA has a pattern of monthly AOD variation in which AODs peak in March/April, decreasing during wet season from May-September, and increasing to the second peak in October. However, in maritime SEA, AOD concentration peaks in October. The three countries with the highest annual satellite AODs are Singapore, Hong Kong, and Vietnam. High urban population proportions in Singapore (40.7%) and Hong Kong (21.6%) were associated with high AOD concentrations as expected. AOD values in SEA urban areas were a factor of 1.4 higher than in rural areas, with respective averages of 0.477 and 0.336. The AOD values varied proportionately to the frequency of biomass burning in which both active fires and AOD peak in March/April and September/October. Peak AOD in September/October in some countries could be related to pollutant transport of Indonesia forest fires. This study analyzed satellite aerosol product quality in relation to AERONET in SEA countries and highlighted framework of air quality assessment over a large, complicated region.
    Matched MeSH terms: Environmental Monitoring/methods*
  9. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
    Matched MeSH terms: Environmental Monitoring/methods
  10. Auta HS, Emenike CU, Fauziah SH
    Environ Pollut, 2017 Dec;231(Pt 2):1552-1559.
    PMID: 28964604 DOI: 10.1016/j.envpol.2017.09.043
    The continuous accumulation of microplastics in the environment poses ecological threats and has been an increasing problem worldwide. In this study, eight bacterial strains were isolated from mangrove sediment in Peninsular Malaysia to mitigate the environmental impact of microplastics and develop a clean-up option. The bacterial isolates were screened for their potential to degrade UV-treated microplastics from polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Only two isolates, namely, Bacillus cereus and Bacillus gottheilii, grew on a synthetic medium containing different microplastic polymers as the sole carbon source. A shake flask experiment was carried out to further evaluate the biodegradability potential of the isolates. Degradation was monitored by recording the weight loss of microplastics and the growth pattern of the isolates in the mineral medium. The biodegradation extent was validated by assessment of the morphological and structural changes through scanning electron microscopy and Fourier transform infrared spectroscopy analyses. The calculated weight loss percentages of the microplastic particles by B. cereus after 40 days were 1.6%, 6.6%, and 7.4% for PE, PET, and PS, respectively. B. gottheilii recorded weight loss percentages of 6.2%, 3.0%, 3.6%, and 5.8% for PE, PET, PP, and PS, respectively. The designated isolates degraded the microplastic material and exhibited potential for remediation of microplastic-contaminated environment. Biodegradation tests must be conducted to characterize the varied responses of microbes toward pollutants, such as microplastics. Hence, a novel approach for biodegradation of microplastics must be developed to help mitigate the environmental impact of plastics and microplastic polymers.
    Matched MeSH terms: Environmental Monitoring/methods*
  11. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
    Matched MeSH terms: Environmental Monitoring/methods*
  12. Khairul Hasni NA, Anual ZF, Rashid SA, Syed Abu Thahir S, Veloo Y, Fang KS, et al.
    Environ Pollut, 2023 May 01;324:121095.
    PMID: 36682614 DOI: 10.1016/j.envpol.2023.121095
    Contamination of water systems with endocrine disrupting chemicals (EDCs) is becoming a major public health concern due to their toxicity and ubiquity. The intrusion of EDCs into water sources and drinking water has been associated with various adverse health effects on humans. However, there is no comprehensive overview of the occurrence of EDCs in Malaysia's water systems. This report aims to describe the occurrence of EDCs and their locations. Literature search was conducted electronically in two databases (PubMed and Scopus). A total of 41 peer-reviewed articles published between January 2000 and May 2021 were selected. Most of the articles dealt with pharmaceuticals (16), followed by pesticides (7), hormones (7), mixed compounds (7), and plasticisers (4). Most studies (40/41) were conducted in Peninsular Malaysia, with 60.9% in the central region and almost half (48.8%) in the Selangor State. Only one study was conducted in the northern region and East Malaysia. The Langat River, the Klang River, and the Selangor River were among the most frequently studied EDC-contaminated surface waters, while the Pahang River and the Skudai River had the highest concentrations of some of the listed compounds. Most of the risk assessments resulted in a hazard quotient (HQ) and a risk quotient (RQ)  1 in the Selangor River. An RQ > 1 for combined pharmaceuticals was found in Putrajaya tap water. Overall, this work provides a comprehensive overview of the occurrence of EDCs in Malaysia's water systems. The findings from this review can be used to mitigate risks and strengthen legislation and policies for safer drinking water.
    Matched MeSH terms: Environmental Monitoring/methods
  13. Hossain S, Ahmad Shukri ZN, Waiho K, Ibrahim YS, Minhaz TM, Kamaruzzan AS, et al.
    Environ Pollut, 2023 Jul 15;329:121697.
    PMID: 37088255 DOI: 10.1016/j.envpol.2023.121697
    Microplastics (MPs) occurrence in farmed aquatic organisms has already been the prime priority of researchers due to the food security concerns for human consumption. A number of commercially important aquaculture systems have already been investigated for MPs pollution but the mud crab (Scylla sp.) aquaculture system has not been investigated yet even though it is a highly demanded commercial species globally. This study reported the MPs pollution in the mud crab (Scylla sp.) aquaculture system for the first time. Three different stations of the selected aquafarm were sampled for water and sediment samples and MPs particles in the samples were isolated by the gravimetric analysis (0.9% w/v NaCl solution). MP abundance was visualized under a microscope along with their size, shape, and color. A subset of the isolated MPs was analyzed by scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR) for the surface and chemical characterization respectively. The average MPs concentration was 47.5 ± 11.875 particles/g in sediment and 127.92 ± 14.99 particles/100 L in the water sample. Fibrous-shaped (72.17%) and transparent-colored (59.37%) MPs were dominant in all the collected samples. However, smaller MPs (>0.05-0.5 mm) were more common in the water samples (47.69%) and the larger (>1-5 mm) MPs were in the sediment samples (47.83%). SEM analysis found cracks and roughness on the surface of the MPs and nylon, polyethylene, polypropylene, and polystyrene MPs were identified by FTIR analysis. PLI value showed hazard level I in water and level II in sediment. The existence of deleterious MPs particles in the mud crab aquaculture system was well evident. The other commercial mud crab aquafarms must therefore be thoroughly investigated in order to include farmed mud crabs as an environmentally vulnerable food security concern.
    Matched MeSH terms: Environmental Monitoring/methods
  14. Kurniawan R, Budi Alamsyah AR, Fudholi A, Purwanto A, Sumargo B, Gio PU, et al.
    Environ Pollut, 2023 Oct 01;334:122212.
    PMID: 37454714 DOI: 10.1016/j.envpol.2023.122212
    The high concentration of nitrogen dioxide (NO2) is to blame for West Java's poor Air Quality Index (AQI). So, this study aims to determine the influence of industrial activity as reflected by the value of its imports and exports, wind speed, and ozone (O3) on the high concentration of tropospheric NO2. The method used is the econometric Vector Error Correction Model (VECM) approach to capture the existence of a short-term and long-term relationship between tropospheric NO2 and its predictor variables. The data used in this study is in the form of monthly time series data for the 2018-2022 period sourced from satellite images (Sentinel-5P and ECMWF Climate Reanalysis) and publications of the Central Bureau of Statistics (BPS-Statistics Indonesia). The results explained that, in the short-term, tropospheric NO2 and O3 influence each other as they would in a photochemical reaction. In the long-term, exports from the industrial sector and wind speed have a significant effect on the concentration of tropospheric NO2. The short-term effect occurs directly in the first month after the shock, while the long-term effect occurs in the second month after the shock. Wind gusts originating from industrial areas cause air conditions to be even more alarming because tropospheric NO2 pollutants spread throughout the region in West Java. Based on the coefficient correlation result, the high number of pneumonia cases is one of the impacts caused by air pollution.
    Matched MeSH terms: Environmental Monitoring/methods
  15. Ghobadi Y, Pradhan B, Shafri HZ, bin Ahmad N, Kabiri K
    Environ Monit Assess, 2015 Jan;187(1):4156.
    PMID: 25421858 DOI: 10.1007/s10661-014-4156-0
    Wetlands are regarded as one of the most important ecosystems on Earth due to various ecosystem services provided by them such as habitats for biodiversity, water purification, sequestration, and flood attenuation. The Al Hawizeh wetland in the Iran-Iraq border was selected as a study area to evaluate the changes. Maximum likelihood classification was used on the remote sensing data acquired during the period of 1985 to 2013. In this paper, five types of land use/land cover (LULC) were identified and mapped and accuracy assessment was performed. The overall accuracy and kappa coefficient for years 1985, 1998, 2002, and 2013 were 93% and 0.9, 92% and 0.89, 91% and 0.9, and 92% and 0.9, respectively. The classified images were examined with post-classification comparison (PCC) algorithm, and the LULC alterations were assessed. The results of the PCC analysis revealed that there is a drastic change in the area and size of the studied region during the period of investigation. The wetland lost ~73% of its surface area from 1985 to 2002. Meanwhile, post-2002, the wetland underwent a restoration, as a result of which, the area increased slightly and experienced an ~29% growth. Moreover, a large change was noticed at the same period in the wetland that altered ~62% into bare soil in 2002. The areal coverage of wetland of 3386 km(2) in 1985 was reduced to 925 km(2) by 2002 and restored to 1906 km(2) by the year 2013. Human activities particularly engineering projects were identified as the main reason behind the wetland degradation and LULC alterations. And, lastly, in this study, some mitigation measures and recommendations regarding the reclamation of the wetland are discussed. Based on these mitigate measures, the discharge to the wetland must be kept according to the water requirement of the wetland. Moreover, some anthropogenic activities have to be stopped in and around the wetland to protect the ecology of the wetland.
    Matched MeSH terms: Environmental Monitoring/methods*
  16. Mohammad Ali BN, Lin CY, Cleophas F, Abdullah MH, Musta B
    Environ Monit Assess, 2015 Jan;187(1):4190.
    PMID: 25471626 DOI: 10.1007/s10661-014-4190-y
    This paper describes the concentration of selected heavy metals (Co, Cu, Ni, Pb, and Zn) in the Mamut river sediments and evaluate the degree of contamination of the river polluted by a disused copper mine. Based on the analytical results, copper showed the highest concentration in most of the river samples. A comparison with Interim Canadian Sediment Quality Guidelines (ICSQG) and Germany Sediment Quality Guidelines (GSQG) indicated that the sediment samples in all the sampling stations, except Mamut river control site (M1), exceeded the limit established for Cu, Ni, and Pb. On the contrary, Zn concentrations were reported well below the guidelines limit (ICSQG and GSQG). Mineralogical analysis indicated that the Mamut river sediments were primarily composed of quartz and accessory minerals such as chalcopyrite, pyrite, edenite, kaolinite, mica, and muscovite, reflected by the geological character of the study area. Enrichment factor (EF) and geoaccumulation index (Igeo) were calculated to evaluate the heavy metal pollution in river sediments. Igeo values indicated that all the sites were strongly polluted with the studied metals in most sampling stations, specifically those located along the Mamut main stream. The enrichment factor with value greater than 1.5 suggested that the source of heavy metals was mainly derived from anthropogenic activity such as mining. The degree of metal changes (δfold) revealed that Cu concentration in the river sediments has increased as much as 20 to 38 folds since the preliminary investigation conducted in year 2004.
    Matched MeSH terms: Environmental Monitoring/methods*
  17. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Fakharian K
    Environ Monit Assess, 2014 Sep;186(9):5797-815.
    PMID: 24891071 DOI: 10.1007/s10661-014-3820-8
    In recent years, groundwater quality has become a global concern due to its effect on human life and natural ecosystems. To assess the groundwater quality in the Amol-Babol Plain, a total of 308 water samples were collected during wet and dry seasons in 2009. The samples were analysed for their physico-chemical and biological constituents. Multivariate statistical analysis and geostatistical techniques were applied to assess the spatial and temporal variabilities of groundwater quality and to identify the main factors and sources of contamination. Principal component analysis (PCA) revealed that seven factors explained around 75% of the total variance, which highlighted salinity, hardness and biological pollution as the dominant factors affecting the groundwater quality in the Plain. Two-way analysis of variance (ANOVA) was conducted on the dataset to evaluate the spatio-temporal variation. The results showed that there were no significant temporal variations between the two seasons, which explained the similarity between six component factors in dry and wet seasons based on the PCA results. There are also significant spatial differences (p > 0.05) of the parameters under study, including salinity, potassium, sulphate and dissolved oxygen in the plain. The least significant difference (LSD) test revealed that groundwater salinity in the eastern region is significantly different to the central and western side of the study area. Finally, multivariate analysis and geostatistical techniques were combined as an effective method for demonstrating the spatial structure of multivariate spatial data. It was concluded that multiple natural processes and anthropogenic activities were the main sources of groundwater salinization, hardness and microbiological contamination of the study area.
    Matched MeSH terms: Environmental Monitoring/methods*
  18. Alagha JS, Said MA, Mogheir Y
    Environ Monit Assess, 2014 Jan;186(1):35-45.
    PMID: 23974533 DOI: 10.1007/s10661-013-3353-6
    Nitrate concentration in groundwater is influenced by complex and interrelated variables, leading to great difficulty during the modeling process. The objectives of this study are (1) to evaluate the performance of two artificial intelligence (AI) techniques, namely artificial neural networks and support vector machine, in modeling groundwater nitrate concentration using scant input data, as well as (2) to assess the effect of data clustering as a pre-modeling technique on the developed models' performance. The AI models were developed using data from 22 municipal wells of the Gaza coastal aquifer in Palestine from 2000 to 2010. Results indicated high simulation performance, with the correlation coefficient and the mean average percentage error of the best model reaching 0.996 and 7 %, respectively. The variables that strongly influenced groundwater nitrate concentration were previous nitrate concentration, groundwater recharge, and on-ground nitrogen load of each land use land cover category in the well's vicinity. The results also demonstrated the merit of performing clustering of input data prior to the application of AI models. With their high performance and simplicity, the developed AI models can be effectively utilized to assess the effects of future management scenarios on groundwater nitrate concentration, leading to more reasonable groundwater resources management and decision-making.
    Matched MeSH terms: Environmental Monitoring/methods*
  19. Fulazzaky MA
    Environ Monit Assess, 2013 Jan;185(1):523-35.
    PMID: 22373956 DOI: 10.1007/s10661-012-2572-6
    Surface water is one of the essential resources for supporting sustainable development. The suitability of such water for a given use depends both on the available quantity and tolerable quality. Temporary status for a surface water quality has been identified extensively. Still the suitability of the water for different purposes needs to be verified. This study proposes a water quality evaluation system to assess the aptitude of the Selangor River water for aquatic biota, drinking water production, leisure and aquatic sport, irrigation use, livestock watering, and aquaculture use. Aptitude of the water has been classified in many parts of the river segment as unsuitable for aquatic biota, drinking water production, leisure and aquatic sport as well as aquaculture use. The water quality aptitude classes of the stream water for nine locations along the river are evaluated to contribute to decision support system. The suitability of the water for five different uses and its aquatic ecosystem are verified.
    Matched MeSH terms: Environmental Monitoring/methods*
  20. Pradhan B, Chaudhari A, Adinarayana J, Buchroithner MF
    Environ Monit Assess, 2012 Jan;184(2):715-27.
    PMID: 21509515 DOI: 10.1007/s10661-011-1996-8
    In this paper, an attempt has been made to assess, prognosis and observe dynamism of soil erosion by universal soil loss equation (USLE) method at Penang Island, Malaysia. Multi-source (map-, space- and ground-based) datasets were used to obtain both static and dynamic factors of USLE, and an integrated analysis was carried out in raster format of GIS. A landslide location map was generated on the basis of image elements interpretation from aerial photos, satellite data and field observations and was used to validate soil erosion intensity in the study area. Further, a statistical-based frequency ratio analysis was carried out in the study area for correlation purposes. The results of the statistical correlation showed a satisfactory agreement between the prepared USLE-based soil erosion map and landslide events/locations, and are directly proportional to each other. Prognosis analysis on soil erosion helps the user agencies/decision makers to design proper conservation planning program to reduce soil erosion. Temporal statistics on soil erosion in these dynamic and rapid developments in Penang Island indicate the co-existence and balance of ecosystem.
    Matched MeSH terms: Environmental Monitoring/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links