Displaying publications 161 - 169 of 169 in total

Abstract:
Sort:
  1. Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, et al.
    PLoS Biol, 2018 Oct;16(10):e3000038.
    PMID: 30346944 DOI: 10.1371/journal.pbio.3000038
    Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
    Matched MeSH terms: Imaging, Three-Dimensional
  2. Guzmán Rojas RA, Kamisan Atan I, Shek KL, Dietz HP
    Ultrasound Obstet Gynecol, 2015 Sep;46(3):363-6.
    PMID: 25766889 DOI: 10.1002/uog.14845
    To determine the prevalence of evidence of residual obstetric anal sphincter injury, to evaluate its association with anal incontinence (AI) and to establish minimal diagnostic criteria for significant (residual) external anal sphincter (EAS) trauma.
    Matched MeSH terms: Imaging, Three-Dimensional
  3. El Beltagi AH, El-Nil H, Alrabiah L, El Shammari N
    Clin Imaging, 2012 Mar-Apr;36(2):142-5.
    PMID: 22370135 DOI: 10.1016/j.clinimag.2011.07.004
    Leprosy is a granulomatous disease primarily affecting the skin and peripheral nerves caused by Mycobacterium leprae, but also significantly involving sinonasal cavities and cranial nerves. It continues to be a significant public health problem, and despite multidrug therapy, it can still cause significant morbidity. The awareness of cranial nerve, intracranial and orbital apex involvement as in our case is important for appropriate treatment measures.
    Matched MeSH terms: Imaging, Three-Dimensional
  4. Sia S, Shibazaki T, Koga Y, Yoshida N
    Am J Orthod Dentofacial Orthop, 2009 Jan;135(1):36-41.
    PMID: 19121498 DOI: 10.1016/j.ajodo.2007.01.034
    This study was designed to determine the optimum vertical height of the retraction force on the power arm that is required for efficient anterior tooth retraction during space closure with sliding mechanics.
    Matched MeSH terms: Imaging, Three-Dimensional
  5. Waran V, Menon R, Pancharatnam D, Rathinam AK, Balakrishnan YK, Tung TS, et al.
    Am J Rhinol Allergy, 2012 Sep-Oct;26(5):e132-6.
    PMID: 23168144 DOI: 10.2500/ajra.2012.26.3808
    Surgical navigation systems have been used increasingly in guiding complex ear, nose, and throat surgery. Although these are helpful, they are only beneficial intraoperatively; thus, the novice surgeon will not have the preoperative training or exposure that can be vital in complex procedures. In addition, there is a lack of reliable models to give surgeons hands-on training in performing such procedures.
    Matched MeSH terms: Imaging, Three-Dimensional
  6. Basri AA, Zuber M, Basri EI, Zakaria MS, Aziz AFA, Tamagawa M, et al.
    Comput Math Methods Med, 2020;2020:9163085.
    PMID: 32454886 DOI: 10.1155/2020/9163085
    This study investigated the impact of paravalvular leakage (PVL) in relation to the different valve openings of the transcatheter aortic valve implantation (TAVI) valve using the fluid structure interaction (FSI) approach. Limited studies were found on the subject of FSI with regards to TAVI-PVL condition, which involves both fluid and structural responses in coupling interaction. Hence, further FSI simulation with the two-way coupling method is implemented to investigate the effects of hemodynamics blood flow along the patient-specific aorta model subjected to the interrelationship between PVL and the different valve openings using the established FSI software ANSYS 16.1. A 3D patient-specific aorta model is constructed using MIMICS software. The TAVI valve identical to Edward SAPIEN XT 26 (Edwards Lifesciences, Irvine, California), at different Geometrical Orifice Areas (GOAs), is implanted into the patient's aortic annulus. The leaflet opening of the TAVI valve is drawn according to severity of GOA opening represented in terms of 100%, 80%, 60%, and 40% opening, respectively. The result proved that the smallest percentage of GOA opening produced the highest possibility of PVL, increased the recirculatory flow proximally to the inner wall of the ascending aorta, and produced lower backflow velocity streamlines through the side area of PVL region. Overall, 40% GOA produced 89.17% increment of maximum velocity magnitude, 19.97% of pressure drop, 65.70% of maximum WSS magnitude, and a decrement of 33.62% total displacement magnitude with respect to the 100% GOA.
    Matched MeSH terms: Imaging, Three-Dimensional
  7. Nasir ZM, Azman M, Baki MM, Mohamed AS, Kew TY, Zaki FM
    Surg Radiol Anat, 2021 Aug;43(8):1225-1233.
    PMID: 33388863 DOI: 10.1007/s00276-020-02639-9
    PURPOSE: This study aims to determine laryngeal dimension in relation to all three transcutaneous injection laryngoplasty (TIL) approaches (thyrohyoid, transthyroid and cricothyroid) using three-dimensionally reconstructed Computed Tomography (CT) scan and compare the measurements between sex, age group and ethnicity.

    METHODS: CT scans of the neck of two hundred patients were analysed by two groups of raters. For thyrohyoid approach, mean distance from the superior border of the thyroid cartilage to the laryngeal cavity (THd) and mean angle from the superior border of the thyroid cartilage to mid-true cords (THa) were measured. For transthyroid approach, mean distance from mid-thyroid cartilage to mid-true cords (TTd) and Hounsfield unit (HU) at mid-thyroid cartilage (TTc) were measured. For cricothyroid approach, mean distance from the inferior border of the thyroid cartilage to the laryngeal cavity (CTd) and mean angle from the inferior border of the thyroid cartilage to mid-true cords (CTa) were measured.

    RESULTS: There were statistically significant differences between males and females for all measurements except for CTa (p three approaches (p > 0.05). There was a significant fair positive correlation between age and TTc (p = 0.0002). For all measurements obtained, there were moderate to excellent inter-group consistency and intra-rater reliability.

    CONCLUSION: This study demonstrated a significant sex dimorphism that may influence the three TIL approaches except for needle angulation in the cricothyroid approach. The knowledge of laryngeal dimension is important to increase success in TIL procedure.

    Matched MeSH terms: Imaging, Three-Dimensional
  8. Makinejad MD, Abu Osman NA, Abu Bakar Wan Abas W, Bayat M
    Clinics (Sao Paulo), 2013 Sep;68(9):1180-8.
    PMID: 24141832 DOI: 10.6061/clinics/2013(09)02
    This study provides an experimental and finite element analysis of knee-joint structure during extended-knee landing based on the extracted impact force, and it numerically identifies the contact pressure, stress distribution and possibility of bone-to-bone contact when a subject lands from a safe height.
    Matched MeSH terms: Imaging, Three-Dimensional
  9. Balaji A, Jaganathan SK, Supriyanto E, Muhamad II, Khudzari AZ
    Int J Nanomedicine, 2015;10:5909-23.
    PMID: 26425089 DOI: 10.2147/IJN.S84307
    Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.
    Matched MeSH terms: Imaging, Three-Dimensional
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links