OBJECTIVES: The anti-inflammatory and anti-catabolic actions of Diclofenac were compared with apigenin-C-glycosides rich Clinacanthus nutans (CN) leaf extract in osteoporotic-osteoarthritis rats.
METHODS: Female Sprague Dawley rats were randomized into five groups (n = 6). Four groups were bilateral ovariectomised for osteoporosis development, and osteoarthritis were induced by intra-articular injection of monosodium iodoacetate (MIA) into the right knee joints. The Sham group was sham-operated, received saline injection and deionized drinking water. The treatment groups were orally given 200 or 400 mg extract/kg body weight or 5 mg diclofenac /kg body weight daily for 28 days. Articular cartilage and bone changes were monitored by gross and histological structures, micro-CT analysis, serum protein biomarkers, and mRNA expressions for inflammation and catabolic protease genes.
RESULTS: HPLC analysis confirmed that apigenin-C-glycosides (shaftoside, vitexin, and isovitexin) were the major compounds in the extract. The extract significantly and dose-dependently reduced cartilage erosion, bone loss, cartilage catabolic changes, serum osteoporotic-osteoarthritis biomarkers (procollagen-type-II-N-terminal-propeptide PIINP; procollagen-type-I-N-terminal-propeptide PINP; osteocalcin), inflammation (IL-1β) and mRNA expressions for nuclear-factor-kappa-beta NF-κβ, interleukin-1-beta IL-1β, cyclooxygenase-2; and matrix-metalloproteinase-13 MMP13 activities, in osteoporotic-osteoarthritis rats comparable to Diclofenac.
CONCLUSION: This study demonstrates that apigenin-C-glycosides at 400 mg CN extract/kg (about 0.2 mg apigenin-equivalent/kg) is comparable to diclofenac in suppressing inflammation and catabolic proteases for osteoporotic-osteoarthritis prevention. Graphical abstract.
METHODS AND ANALYSIS: In this 12-week randomised double-blinded placebo-controlled trial for the effects of dietary TT supplementation in postmenopausal women, postmenopausal women aged 45 years and older with at least 1 year after menopause and bone mineral density T-score at the spine and/or hip 2.5 or more below the reference values will be randomly assigned to 3 daily supplements: (1) placebo group receiving 860 mg olive oil, (2) low TT group receiving 430 mg of 70% pure TTs (containing 300 mg TT) and (3) high TT group receiving 860 mg of 70% pure TTs (600 mg TT). The primary outcome measure will be urinary N-terminal telopeptide. The secondary outcome measures will be serum bone-specific alkaline phosphatase, receptor activator of nuclear factor-κB ligand, osteoprotegerin, urinary 8-hydroxy-2'-deoxyguanosine and quality of life. At 0, 6 and 12 weeks, the following will be assessed: (1) primary and secondary outcome measures; (2) serum TT and tocopherol concentrations; (3) physical activity and food frequency questionnaires. Liver function will be monitored every 6 weeks for safety. 'Intent-to-treat' principle will be employed for data analysis. A model of repeated measurements with random effect error terms will be applied. Analysis of covariance, χ2 analysis and regression will be used for comparisons.
ETHICS AND DISSEMINATION: This study was approved by the Bioethics Committee of the Texas Tech University Health Sciences Center. The findings of this trial will be submitted to a peer-reviewed journal in the areas of bone or nutrition and international conferences.
TRIAL REGISTRATION NUMBER: NCT02058420; results.
INTRODUCTION: To investigate the longitudinal associations of bone mineral measures with antiepileptic drug (AED) use, including enzyme-inducing (EIAED) and non-enzyme-inducing (NEIAED) types, and other predictors of bone loss in a study of 48 same-sex twin/age-matched sibling pairs (40 female, 8 male) discordant for AED use.
METHODS: Using dual-energy X-ray absorptiometry (DXA), areal bone mineral density (aBMD) and content (BMC) at the hip regions, forearm, lumbar spine, and whole body were measured twice, at least 2 years apart. The mean within-pair difference (MWPD), MWPD%, and mean annual rate of aBMD change were adjusted for age, weight, and height. Predictors of bone loss were evaluated.
RESULTS: AED users, compared to non-users, at baseline and follow-up, respectively, had reduced aBMD at the total hip (MWPD% 3.8, 4.4%), femoral neck (4.7, 4.5%), and trochanter regions (4.1, 4.6%) (p 0.05) regions did not differ within pairs. Nevertheless, EIAED users had greater aBMD loss than non-users (n = 20 pairs) at the total hip (1.7 vs. 0.3%, p = 0.013) and whole body regions (0.7% loss vs. 0.1% BMD gain, p = 0.019), which was not found in NEIAED-discordant pairs (n = 16). AED use >20 years predicted higher aBMD loss at the forearm (p = 0.028), whole body (p = 0.010), and whole body BMC (p = 0.031).
CONCLUSIONS: AED users had reduced aBMD at the hip regions. Prolonged users and EIAED users had greater aBMD loss, predicting a higher risk of bone fragility. Further prospective studies of AED effects on bone microarchitecture are needed.
OBJECTIVES: To perform a systematic review of clinical practice guidelines for falls prevention and management for adults 60 years or older in all settings (eg, community, acute care, and nursing homes), evaluate agreement in recommendations, and identify potential gaps.
EVIDENCE REVIEW: A systematic review following Preferred Reporting Items for Systematic Reviews and Meta-analyses statement methods for clinical practice guidelines on fall prevention and management for older adults was conducted (updated July 1, 2021) using MEDLINE, PubMed, PsycINFO, Embase, CINAHL, the Cochrane Library, PEDro, and Epistemonikos databases. Medical Subject Headings search terms were related to falls, clinical practice guidelines, management and prevention, and older adults, with no restrictions on date, language, or setting for inclusion. Three independent reviewers selected records for full-text examination if they followed evidence- and consensus-based processes and assessed the quality of the guidelines using Appraisal of Guidelines for Research & Evaluation II (AGREE-II) criteria. The strength of the recommendations was evaluated using Grades of Recommendation, Assessment, Development, and Evaluation scores, and agreement across topic areas was assessed using the Fleiss κ statistic.
FINDINGS: Of 11 414 records identified, 159 were fully reviewed and assessed for eligibility, and 15 were included. All 15 selected guidelines had high-quality AGREE-II total scores (mean [SD], 80.1% [5.6%]), although individual quality domain scores for clinical applicability (mean [SD], 63.4% [11.4%]) and stakeholder (clinicians, patients, or caregivers) involvement (mean [SD], 76.3% [9.0%]) were lower. A total of 198 recommendations covering 16 topic areas in 15 guidelines were identified after screening 4767 abstracts that proceeded to 159 full texts. Most (≥11) guidelines strongly recommended performing risk stratification, assessment tests for gait and balance, fracture and osteoporosis management, multifactorial interventions, medication review, exercise promotion, environment modification, vision and footwear correction, referral to physiotherapy, and cardiovascular interventions. The strengths of the recommendations were inconsistent for vitamin D supplementation, addressing cognitive factors, and falls prevention education. Recommendations on use of hip protectors and digital technology or wearables were often missing. None of the examined guidelines included a patient or caregiver panel in their deliberations.
CONCLUSIONS AND RELEVANCE: This systematic review found that current clinical practice guidelines on fall prevention and management for older adults showed a high degree of agreement in several areas in which strong recommendations were made, whereas other topic areas did not achieve this level of consensus or coverage. Future guidelines should address clinical applicability of their recommendations and include perspectives of patients and other stakeholders.
MATERIALS AND METHODS: A total of 32 female Wistar rats were randomly divided into four groups. The baseline group was sacrificed at the start of the study, and another group was sham operated. The remaining rats were ovariectomized and either given olive oil as a vehicle or treated with tocotrienol at a dose of 60 mg/kg body weight. After four weeks of treatment, blood was withdrawn for the measurement of interleukin-1 (IL1) and interleukin-6 (IL6) (bone resorbing cytokines), serum osteocalcin (a bone formation marker) and pyridinoline (a bone resorption marker).
RESULTS: Tocotrienol supplementation in ovariectomized rats significantly reduced the levels of osteocalcin, IL1 and IL6. However, it did not alter the serum pyridinoline level.
CONCLUSION: Tocotrienol prevented osteoporotic bone loss by reducing the high bone turnover rate associated with estrogen deficiency. Therefore, tocotrienol has the potential to be used as an anti-osteoporotic agent in postmenopausal women.
METHODS: Thirty female Sprague-Dawley rats weighing 200-250 g were assigned to: (i) a sham-operated group that was given a normal saline; (ii) an ovariectomized control group that was given a normal saline; or (iii) an ovariectomized + estrogen (100 mg/kg/day) group that was treated with conjugated equine estrogen. The right femur of all rats was fractured, and a Kirschner wire was inserted six weeks post-ovariectomy. Treatment with estrogen was given for another six weeks post-fracture. At the end of the study, blood samples were taken, and the right femur was harvested and subjected to biomechanical strength testing.
RESULTS: The percentage change in the plasma TGF-β1 level before treatment was significantly lower in the ovariectomized control and estrogen groups when compared with the sham group (p<0.001). After six weeks of treatment, the percentage change in the plasma TGF-β1 level in the estrogen group was significantly higher compared with the level in the ovariectomized control group (p = 0.001). The mean ultimate force was significantly increased in the ovariectomized rats treated with estrogen when compared with the ovariectomized control group (p = 0.02).
CONCLUSION: These data suggest that treatment with conjugated equine estrogen enhanced the strength of the healed bone in estrogen-deficient rats by most likely inducing the expression of TGF-β1.