Displaying publications 161 - 180 of 217 in total

Abstract:
Sort:
  1. Ahmad MB, Fatehi A, Zakaria A, Mahmud S, Mohammadi SA
    Int J Mol Sci, 2012;13(12):15640-52.
    PMID: 23443085 DOI: 10.3390/ijms131215640
    This study focuses on the fabrication and electrical characterization of a polymer composite based on nano-sized varistor powder. The polymer composite was fabricated by the melt-blending method. The developed nano-composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FeSEM), and energy-dispersive X-ray spectroscopy (EDAX). The XRD pattern revealed the crystallinity of the composite. The XRD study also showed the presence of secondary phases due to the substitution of zinc by other cations, such as bismuth and manganese. The TEM picture of the sample revealed the distribution of the spherical, nano-sized, filler particles throughout the matrix, which were in the 10-50 nm range with an average of approximately 11 nm. The presence of a bismuth-rich phase and a ZnO matrix phase in the ZnO-based varistor powder was confirmed by FeSEM images and EDX spectra. From the current-voltage curves, the non-linear coefficient of the varistor polymer composite with 70 wt% of nano filler was 3.57, and its electrical resistivity after the onset point was 861 KΩ. The non-linear coefficient was 1.11 in the sample with 100 wt% polymer content. Thus, it was concluded that the composites established a better electrical non-linearity at higher filler amounts due to the nano-metric structure and closer particle linkages.
    Matched MeSH terms: Zinc Oxide/chemistry*
  2. Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F
    Int J Mol Sci, 2014 Jun 18;15(6):11040-53.
    PMID: 24945313 DOI: 10.3390/ijms150611040
    In this study, cellulose nanocrystals/zinc oxide (CNCs/ZnO) nanocomposites were dispersed as bifunctional nano-sized fillers into poly(vinyl alcohol) (PVA) and chitosan (Cs) blend by a solvent casting method to prepare PVA/Cs/CNCs/ZnO bio-nanocomposites films. The morphology, thermal, mechanical and UV-vis absorption properties, as well antimicrobial effects of the bio-nanocomposite films were investigated. It demonstrated that CNCs/ZnO were compatible with PVA/Cs and dispersed homogeneously in the polymer blend matrix. CNCs/ZnO improved tensile strength and modulus of PVA/Cs significantly. Tensile strength and modulus of bio-nanocomposite films increased from 55.0 to 153.2 MPa and from 395 to 932 MPa, respectively with increasing nano-sized filler amount from 0 to 5.0 wt %. The thermal stability of PVA/Cs was also enhanced at 1.0 wt % CNCs/ZnO loading. UV light can be efficiently absorbed by incorporating ZnO nanoparticles into a PVA/Cs matrix, signifying that these bio-nanocomposite films show good UV-shielding effects. Moreover, the biocomposites films showed antibacterial activity toward the bacterial species Salmonella choleraesuis and Staphylococcus aureus. The improved physical properties obtained by incorporating CNCs/ZnO can be useful in variety uses.
    Matched MeSH terms: Zinc Oxide/chemistry*
  3. Supramaniam J, Low DYS, Wong SK, Tan LTH, Leo BF, Goh BH, et al.
    Int J Mol Sci, 2021 May 28;22(11).
    PMID: 34071337 DOI: 10.3390/ijms22115781
    Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.
    Matched MeSH terms: Zinc Oxide/chemistry*
  4. Singh S, Srivastava B, Gupta K, Gupta N, Singh R, Singh S
    Int J Clin Pediatr Dent, 2020 8 4;13(2):119-123.
    PMID: 32742086 DOI: 10.5005/jp-journals-10005-1718
    Aim and objective: The aim of this study was to evaluate and compare the antifungal efficacy of MTA Fillapex, Metapex, zinc oxide eugenol cement, Endomethasone, and Endoflas against Candida albicans.

    Materials and methods: Root canal exudates of 30 patients were tested against MTA Fillapex (Angelus), Metapex (BioMed), zinc oxide eugenol (Deepak Enterprise), Endomethasone (Septodont), Endoflas FS (Sanlor Laboratories), MTA (Angelus) (positive control), and glycerine (negative control). Children with failed endodontic cases were included in the study. Tube dilution and agar diffusion methods were used to check the antifungal efficacy of the root canal sealers. In tube dilution method, 24-well culture plates containing freshly mixed material along with Candida albicans were used. Wells containing MTA (Angelus) along with Sabouraud dextrose agar and Candida albicans served as positive control while glycerine along with Sabouraud dextrose agar and Candida albicans served as negative control. All plates were incubated at 37°C for 24 hours. Growth of the fungi was monitored after 24 hours by the presence of the turbidity. The samples were recultured to test the experimental material using agar well diffusion method, and the Petri plates were incubated for 24 hours and 72 hours. Zone of inhibition was measured after respective time period. Paired t test was used for the data analysis.

    Results: It was seen in tube dilution method Endomethasone showed least turbidity while maximum was shown by Metapex; similar results were seen in case of agar well diffusion method in which largest zone of inhibition was shown by Endomethasone while smallest was by Metapex.

    Conclusion: It was concluded that Endomethasone showed maximum efficacy against Candida albicans as compared to Metapex.

    How to cite this article: Singh S, Srivastava B, Gupta K, et al. Comparative Evaluation of Antifungal Efficacy of Five Root Canal Sealers against Clinical Isolates of Candida albicans: A Microbiological Study. Int J Clin Pediatr Dent 2020;13(2):119-123.

    Matched MeSH terms: Zinc Oxide; Zinc Oxide-Eugenol Cement
  5. Adam H, Gopinath SCB, Arshad MKM, Parmin NA, Hashim U
    Int J Biol Macromol, 2021 Feb 28;171:217-224.
    PMID: 33418041 DOI: 10.1016/j.ijbiomac.2021.01.014
    Misfolding and accumulation of the protein alpha synuclein in the brain cells characterize Parkinson's disease (PD). Electrochemical based aluminum interdigitated electrodes (ALIDEs) was fabricated by using conventional photolithography method and modified the surfaces with zinc oxide and gold nanorod by using spin coating method for the analysis of PD protein biomarker. The device surface modified with gold nanorod of 25 nm diameter was used. The bare devices and the surface modified devices were characterized by Scanning Electron Microscope, 3D-Profilometer, Atomic Force Microscope and high-power microscope. The above measurement was also performed to measure the interaction of antibody with aggregated alpha-synuclein for normal, aggregated and aggregated alpha synuclein in human serum and distinguished against 3 control proteins (PARK1, DJ-1 and Factor IX). The detection limit for normal alpha synuclein was 1 f. with the sensitivity of 1 f. on a linear regression (R2 = 0.9759). The detection limit for aggregated alpha synuclein was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9797). Also, the detection limit of aggregated alpha synuclein in serum was 10 aM with the sensitivity of 1 aM on a linear regression (R2 = 0.9739). These results however indicate that, serum has only minimal amount of alpha synuclein.
    Matched MeSH terms: Zinc Oxide
  6. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
    Matched MeSH terms: Zinc Oxide/pharmacology*; Zinc Oxide/chemistry
  7. Yusof NAA, Zain NM, Pauzi N
    Int J Biol Macromol, 2019 Mar 01;124:1132-1136.
    PMID: 30496864 DOI: 10.1016/j.ijbiomac.2018.11.228
    Antibacterial activity of zinc oxide (ZnO) nanoparticles have received significant interest, particularly by the implementation of nanotechnology to synthesize particles in nanometer region. ZnO nanoparticles were successfully synthesized through microwave heating by using chitosan as a stabilizing agent and characterized by UV-vis, FTIR, XRD and FESEM-EDX. The aim of the present study is to determine the antibacterial activity of ZnO nanoparticles against Gram-positive bacterium Staphylococcus aureus (S. aureus) and Gram-negative bacterium Escherichia coli (E. coli). The antibacterial effect of ZnO nanoparticles was investigated for the inhibition zone and inactivation of cell growth. The absorption of ZnO nanoparticles was found to be around 360 nm. FTIR results showed the stretching mode of ZnO nanoparticles at 475 cm-1 of the absorption band. EDX results indicated that ZnO nanoparticles have been successfully formed with an atomic percentage of zinc and oxygen at 23.61 and 46.57% respectively. X-ray diffraction result was confirmed the single-phase formation of ZnO nanoparticles and the particle sizes were observed to be around 50 to 130 nm. The results showed that ZnO nanoparticles have displayed inhibition zone of 16 and 13 mm against S. aureus and E. coli respectively. Gram-negative bacteria seemed to be more resistant to ZnO nanoparticles than Gram-positive bacteria.
    Matched MeSH terms: Zinc Oxide
  8. Ullah S, Zainol I, Idrus RH
    Int J Biol Macromol, 2017 Nov;104(Pt A):1020-1029.
    PMID: 28668615 DOI: 10.1016/j.ijbiomac.2017.06.080
    The zinc oxide nanoparticles (particles size <50nm) incorporated into chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds.
    Matched MeSH terms: Zinc Oxide/chemistry*
  9. Nor Dalila Marican, Rozita Hod, Nadiah Wan-Arfah, Azmi Hassan
    Int J Public Health Res, 2018;8(1):933-938.
    MyJurnal
    Introduction Non-specific low back pain is one of the most common physical ailments
    affecting millions of people worldwide. This condition constitutes a
    significant public health problem and was listed as a prevalent health
    complaint in most societies. Even though there are many anecdotal claims
    for reflexology in the treatment of various conditions such as a migraine,
    arthritis and multiple sclerosis, but very little clinical evidence exists for
    reflexology on the management of low back pain per se. This study aims to
    evaluate the effects of foot reflexology therapy as an adjunctive treatment to
    the Malaysian low back pain standard care in relieving pain and promoting
    health-related quality of life among people with non-specific low back pain.
    Methods This is a parallel randomized controlled trial with pre and post-treatment
    study design. The study setting for the intervention located at Penawar
    Reflexology Center, Kuala Terengganu, Malaysia. A total of 100
    participants with non-specific low back pain will be allocated to one of two
    groups, using a randomization computer program of Research Randomizer.
    The control group will receive low back pain standard care, while the
    intervention group will receive standard care plus eight sessions of foot
    reflexology therapy. The pain intensity and health-related quality of life
    scores will be measured using Visual Analogue Scale and Euro-quality of
    life scale respectively in both groups. The study was approved by the
    Human Research Ethics Committee of University Sultan Zainal Abidin
    (UHREC/2016/2/011). The study protocol was registered at
    ClinicalTrials.gov, with the ID number of NCT02887430.
    Measurements Outcome measures will be undertaken at pre-intervention (week 1), postintervention
    (week 6) and follow-up (week 10).
    Conclusions This will be the first trial to compare the foot reflexology therapy with
    control group among people who medically diagnosed with non-specific low
    back pain in Malaysia. The result of this study will contribute to better
    management of this population, especially for Malaysia healthcare setting.

    Study site: Penawar Reflexology Center, Kuala Terengganu, Malaysia
    Matched MeSH terms: Zinc Oxide
  10. Alomari G, Al-Trad B, Hamdan S, Aljabali AAA, Al Zoubi MS, Al-Batanyeh K, et al.
    IET Nanobiotechnol, 2021 Jul;15(5):473-483.
    PMID: 34694755 DOI: 10.1049/nbt2.12026
    This study examines the effect of nanoparticles with zinc oxides (ZnONPs) on diabetic nephropathy, which is the primary cause of mortality for diabetic patients with end-stage renal disease. Diabetes in adult male rats was induced via intraperitoneal injection of streptozotocin. ZnONPs were intraperitoneally administered to diabetic rats daily for 7 weeks. Diabetes was associated with increases in blood glucose level, 24-h urinary albumin excretion rate, glomerular basement membrane thickness, renal oxidative stress markers, and renal mRNA or protein expression of transforming growth factor-β1, fibronectin, collagen-IV, tumour necrosis factor-α and vascular endothelial growth factor-A. Moreover, the expression of nephrin and podocin, and the mRNA expression of matrix metalloproteinase-9 were decreased in the diabetic group. These changes were not detected in the control group and were significantly prevented by ZnONP treatment. These results provide evidence that ZnONPs ameliorate the renal damage induced in a diabetic rat model of nephropathy through improving renal functionality; inhibiting renal fibrosis, oxidative stress, inflammation and abnormal angiogenesis; and delaying the development of podocyte injury. The present findings may help design the clinical application of ZnONPs for protection against the development of diabetic nephropathy.
    Matched MeSH terms: Zinc Oxide*
  11. Le AT, Pung SY, Sreekantan S, Matsuda A, Huynh DP
    Heliyon, 2019 Apr;5(4):e01440.
    PMID: 31008388 DOI: 10.1016/j.heliyon.2019.e01440
    Effluent discharges from industry and domestic waste containing unknown inorganic pollutants. In this work, different mechanisms of heavy metal ions removal using ZnO particles were studied. ZnO particles were synthesized using solid precipitation technique. The morphology of ZnO particles was rod-like shape. The average length and diameter of ZnO particle were 497.34 ± 15.55 and 75.78 ± 10.39nm, respectively. These particles removed effectively heavy metal ions such as Cu(II), Ag(I) and Pb(II) ions with efficiency >85% under exposure of 1 hour of UV light. However, poor removal efficiency, i.e. <15% was observed for Cr(VI), Mn(II), Cd(II) and Ni(II) ions. The removal of these heavy metal ions was in the forms of metals or metal oxide via reduction/oxidation or adsorption mechanism.
    Matched MeSH terms: Zinc Oxide
  12. Rasli NI, Basri H, Harun Z
    Heliyon, 2020 Jan;6(1):e03156.
    PMID: 32042952 DOI: 10.1016/j.heliyon.2020.e03156
    Zinc oxide (ZnO) was biosynthesised from aloe vera plant extract. The aloe vera plant extract was used as a reducing agent in biosynthesis process. Green synthesis method was proposed because it is cost effective and environmentally friendly. ZnO was characterised using SEM, EDX, FTIR, and XRD analyses. The antibacterial property was tested against Escherichia coli. The effects of aloe vera volume (2-50) mL, precursor concentration (0.001-0.300) M, reaction time (20 min-48 h), and temperature of the reaction (26-200) °C on ZnO characteristics were investigated and screened using a two-level factorial method. Based on the observation and ANOVA analysis result, precursor concentration was the only significant parameter that affected the production of the ZnO nanoparticles (NPs). The EDX analysis proved the presence of ZnO while the SEM analysis confirmed the average size of ZnO particle size was in the range of (18-618) μm with a rod-shape appearance. The XRD analysis showed that the average crystallite size was 0.452 μm and it was in the hexagonal phase. It was also proven to have antibacterial property against E. coli.
    Matched MeSH terms: Zinc Oxide
  13. Boroumand Moghaddam A, Moniri M, Azizi S, Abdul Rahim R, Bin Ariff A, Navaderi M, et al.
    Genes (Basel), 2017 Oct 20;8(10).
    PMID: 29053567 DOI: 10.3390/genes8100281
    Green products have strong potential in the discovery and development of unique drugs. Zinc oxide nanoparticles (ZnO NPs) have been observed to have powerful cytotoxicity against cells that cause breast cancer. The present study aims to examine the cell cycle profile, status of cell death, and pathways of apoptosis in breast cancer cells (MCF-7) treated with biosynthesized ZnO NPs. The anti-proliferative activity of ZnO NPs was determined using MTT assay. Cell cycle analysis and the mode of cell death were evaluated using a flow cytometry instrument. Quantitative real-time-PCR (qRT-PCR) was employed to investigate the expression of apoptosis in MCF-7 cells. ZnO NPs were cytotoxic to the MCF-7 cells in a dose-dependent manner. The 50% growth inhibition concentration (IC50) of ZnO NPs at 24 h was 121 µg/mL. Cell cycle analysis revealed that ZnO NPs induced sub-G₁ phase (apoptosis), with values of 1.87% at 0 μg/mL (control), 71.49% at IC25, 98.91% at IC50, and 99.44% at IC75. Annexin V/propidium iodide (PI) flow cytometry analysis confirmed that ZnO NPs induce apoptosis in MCF-7 cells. The pro-apoptotic genes p53, p21, Bax, and JNK were upregulated, whereas anti-apoptotic genes Bcl-2, AKT1, and ERK1/2 were downregulated in a dose-dependent manner. The arrest and apoptosis of MCF-7 cells were induced by ZnO NPs through several signalling pathways.
    Matched MeSH terms: Zinc Oxide
  14. Akhmal Saadon S, Sathishkumar P, Mohd Yusoff AR, Hakim Wirzal MD, Rahmalan MT, Nur H
    Environ Technol, 2016 Aug;37(15):1875-82.
    PMID: 26732538 DOI: 10.1080/09593330.2015.1135989
    In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.
    Matched MeSH terms: Zinc Oxide/chemistry*
  15. Lam SM, Sin JC, Abdullah AZ, Mohamed AR
    Environ Technol, 2013 May-Jun;34(9-12):1097-106.
    PMID: 24191441
    In the work presented here, photocatalytic systems using TiO2 and ZnO suspensions were utilized to evaluate the degradation of resorcinol (ReOH). The effects of catalyst concentration and solution pH were investigated and optimized using multivariate analysis based on response surface methodology. The results indicated that ZnO showed greater degradation and mineralization activities compared to TiO2 under optimized conditions. Using certain radical scavengers, a positive hole, together with the participation of hydroxyl radicals, were the oxidative species responsible for ReOH degradation on TiO2 whereas, the ZnO photocatalysis occurred principally via hydroxyl radicals. Some hitherto unreported pathway intermediates of ReOH degradation were identified using gas chromatography-mass spectrometry. A tentative reaction mechanism for the formation of these intermediates was proposed. Moreover, the figure-of-merit electrical energy per order was employed to estimate the electrical energy consumption.
    Matched MeSH terms: Zinc Oxide/chemistry*
  16. Abdollahi Y, Abdullah AH, Gaya UI, Zainal Z, Yusof NA
    Environ Technol, 2012 Jun;33(10-12):1183-9.
    PMID: 22856288
    The effective removal of o-cresol is currently both an environmental and economic challenge. ZnO is not only an efficient photocatalyst but is also cost effective, as its photoabsorption can extend from the ultraviolet (UV) to the visible range thereby allowing the use of inexpensive visible light sources, such as sunlight. The principal objective of the present work is to investigate the visible light-driven removal of o-cresol from aqueous solution in the presence of 1.0 wt% Mn-doped ZnO. To measure the efficiency ofphotodegradation, the variables studied included the amount ofphotocatalyst, concentration of o-cresol, pH and irradiation time. The concentration ofo-cresol and residual organic carbon was monitored using a UV-visible spectrophotometer, ultra high-pressure liquid chromatography and a total organic carbon analyser. The optimum conditions under which the photodegradation of o-cresol was most favourable corresponded to 1.5 g/l ZnO, 35 ppm o-cresol and pH 9. The ZnO-1 wt% Mn photoprocess has demonstrated reusability for more than three times, which warrants its scale-up from laboratory- to in industrial-scale application.
    Matched MeSH terms: Zinc Oxide/chemistry
  17. Ba-Abbad MM, Takriff MS, Kadhum AA, Mohamad AB, Benamor A, Mohammad AW
    Environ Sci Pollut Res Int, 2017 Jan;24(3):2804-2819.
    PMID: 27837474 DOI: 10.1007/s11356-016-8033-y
    In this study, the photocatalytic degradation of toxic pollutant (2-chlorophenol) in the presence of ZnO nanoparticles (ZnO NPs) was investigated under solar radiation. The three main factors, namely pH of solution, solar intensity and calcination temperature, were selected in order to examine their effects on the efficiency of the degradation process. The response surface methodology (RSM) technique based on D-optimal design was applied to optimise the process. ANOVA analysis showed that solar intensity and calcination temperature were the two significant factors for degradation efficiency. The optimum conditions in the model were solar intensity at 19.8 W/m(2), calcination temperature at 404 °C and pH of 6.0. The maximum degradation efficiency was predicted to be 90.5% which was in good agreement with the actual experimental value of 93.5%. The fit of the D-optimal design correlated very well with the experimental results with higher values of R (2) and R (2)adj correlation coefficients of 0.9847 and 0.9676, respectively. The intermediate mechanism behaviour of the 2-chlorophenol degradation process was determined by gas chromatography-mass spectrometry (GC-MS). The results confirmed that 2-chlorophenol was converted to acetic acid, a non-toxic compound.
    Matched MeSH terms: Zinc Oxide
  18. Ong CB, Mohammad AW, Ng LY
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33856-33869.
    PMID: 29943245 DOI: 10.1007/s11356-018-2557-2
    In this work, synergistic effect of solar photocatalysis integrated with adsorption process towards the degradation of Congo red (CR) was investigated via two different approaches using a photocatalytic membrane reactor. In the first approach, sequential treatments were conducted through the adsorption by graphene oxide (GO) and then followed by photocatalytic oxidation using Fe-doped ZnO nanocomposites (NCs). In the second approach, however, CR solution was treated by photocatalytic oxidation using Fe-doped ZnO/rGO NCs. These nanocomposites were synthesized by a sol-gel method. The NCs were characterized by X-ray diffraction (XRD), photoluminescence (PL), Fourier transmission infrared (FTIR), ultraviolet-visible (UV-vis) spectroscopy, and field emission scanning electron microscopy (FESEM). It was observed that Fe-doped ZnO could enhance the photoactivity of ZnO under solar light. When Fe-doped ZnO were decorated on GO sheets, however, this provided a surface enhancement for adsorption of organic pollutants. The photocatalytic performances using both approaches were evaluated based on the degradation of CR molecules in aqueous solution under solar irradiation. Nanofiltration (NF) performance in terms of CR residual removal from water and their fouling behavior during post-separation of photocatalysts was studied. Serious flux declined and thicker fouling layer on membrane were found in photocatalytic membrane reactor using Fe-doped ZnO/rGO NCs which could be attributed to the stronger π-π interaction between rGO and CR solution.
    Matched MeSH terms: Zinc Oxide/chemistry
  19. Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(29):23331-23340.
    PMID: 28840563 DOI: 10.1007/s11356-017-9964-7
    A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.
    Matched MeSH terms: Zinc Oxide
  20. Mohamed Isa ED, Che Jusoh NW, Hazan R, Shameli K
    Environ Sci Pollut Res Int, 2021 Feb;28(5):5774-5785.
    PMID: 32975756 DOI: 10.1007/s11356-020-10939-1
    One of mankind's biggest concerns is water pollution. Textile industry emerged as one of the main contributors with dyes as the main pollutant. Presence of dyes in water is very dangerous due to their toxicity; thus, it is important to remove them from water. In these recent years, heterogeneous advance oxidation process surfaced as a possible dyes' removal technique. This process utilizes semiconductor as photocatalyst to degrade the dyes in presence of light and zinc oxide (ZnO) appears to be a promising photocatalyst for this process. In this study, pullulan, a biopolymer, was used to produce porous ZnO microflowers (ZnO-MFs) through green synthesis via precipitation method. The effects of pullulan's amount on the properties of ZnO-MFs were investigated. The ZnO-MF particle size decreased with the increased of pullulan amount. Interestingly, formation of pores occurred in presence of pullulan. The synthesized ZnO-MFs have the surface area ranging from 6.22 to 25.65 m2 g-1 and pore volume up to 0.1123 cm3 g-1. The ZnO-MF with the highest surface area was chosen for photocatalytic degradation of methyl orange (MO). The highest degradation occurred in 300 min with 150 mg catalyst dosage, 10 ppm initial dye concentration, and pH 7 experimental conditions. However, through comparison of photodegradation of MO with all synthesized ZnO-MFs, 25PZ exhibited the highest degradation rate. This shows that photocatalytic activity is not dependent on surface area alone. Based on these results, ZnO-MF has the potential to be applied in wastewater treatment. However, further improvement is needed to increase its photocatalytic activity.
    Matched MeSH terms: Zinc Oxide*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links