OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.
MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.
RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.
CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.
METHODS: We retrospectively reviewed two pictures both with white light (WL) and LCI for 54 consecutive neoplastic polyps 2-20 mm in size. All pictures were evaluated by four endoscopists according to a published polyp visibility score from four (excellent visibility) to one (poor visibility). Additionally, we calculated CD value between each polyp and surrounding mucosa in LCI and WL using an original software.
RESULTS: The mean polyp visibility scores of LCI (3.11 ± 1.05) were significantly higher than those of WL (2.50 ± 1.09, P
METHODS: Thirty Asian female IBS patients (IBS group) and 39 healthy individuals (control group) were included in this study. Brain structural magnetic resonance imaging was performed. We used FreeSurfer to analyze the differences in the cortical thickness and their correlations with patient characteristics.
RESULTS: The left cuneus, left rostral middle frontal cortex, left supramarginal cortex, right caudal anterior cingulate cortex, and bilateral insula exhibited cortical thinning in the IBS group compared with those in the controls. Furthermore, the brain cortical thickness correlated negatively the severity as well as duration of abdominal pain.
CONCLUSIONS: Some of our findings differ from those of Western studies. In our study, all of the significant brain regions in the IBS group exhibited cortical thinning compared with those in the controls. The differences in cortical thickness between the IBS patients and controls may provide useful information to facilitate regulating abdominal pain in IBS patients. These findings offer insights into the association of different cultures and sexes with differences in cortical thinning in patients with IBS.