Displaying all 4 publications

Abstract:
Sort:
  1. Mustafa SM, Chua LS, El-Enshasy HA, Abd Majid FA, Hanapi SZ, Abdul Malik R
    J Food Biochem, 2019 04;43(4):e12805.
    PMID: 31353583 DOI: 10.1111/jfbc.12805
    This study was focused on the effects of fermentation temperature and pH on the quality of Punica granatum juice probioticated with Lactobacillus species: Lactobacillus plantarum, Lactobacillus casei, Lactobacillus bulgaricus, and Lactobacillus salivarius. The whole fruit juice of P. granatum which is rich with phytonutrients appeared to be a good probiotic carrier. The probiotication was carried out for 24 hr at 30, 35, and 37°C and pH 2.5, 4.0, and 5.5 under microaerophilic conditions. The results found that P. granatum juice cultivated with L. casei had a better growth profile with a higher biomass density at 37°C around pH 3.5-4.0. Probiotication could maintain the scavenging activity of P. granatum juice cultivated with L. casei. The scavenging activity achieved up to 90% inhibition at the concentration of 5 mg/ml. The whole fruit-squeezed P. granatum juice was suitable for the growth of Lactobacillus species even without supplementation during cultivation. PRACTICAL APPLICATIONS: The findings of this study presented the potential of P. granatum juice (whole fruit) to be used as a good probiotic carrier, particularly for Lactobacillus species without supplementation. High nutritious P. granatum juice catered the need of probiotic bacteria during fermentation. Probiotication could maintain the antioxidant capacity of the juice in term of its radical scavenging activity. The antioxidant capacity was mainly attributed to the metabolites such as phenolic acids (romarinic acid and caftaric acid) and flavonoids (quercetin, quercetin 3-glucoside, rutin and kaempferol rutinoside). With the optimized temperature (37°C) and pH (4.00), probiotic bacteria could growth well up to a cell viability of 2.46 × 1010  cfu/ml. This offers P. granatum to be developed into functional food to cater to the needs of the consumers who are lactose intolerant to dairy products.
  2. Miswan Z, Lukman SK, Abd Majid FA, Loke MF, Saidin S, Hermawan H
    Int J Pharm, 2016 Dec 30;515(1-2):460-466.
    PMID: 27793709 DOI: 10.1016/j.ijpharm.2016.10.056
    Active ingredients of ginsenoside, Rg1 and Re, are able to inhibit the proliferation of vascular smooth muscle cells and promote the growth of vascular endothelial cells. These capabilities are of interest for developing a novel drug-eluting stent to potentially solve the current problem of late-stent thrombosis and poor endotheliazation. Therefore, this study was aimed to incorporate ginsenoside into degradable coating of poly(lactic-co-glycolic acid) (PLGA). Drug mixture composed of ginseng extract and 10% to 50% of PLGA (xPLGA/g) was coated on electropolished stainless steel 316L substrate by using a dip coating technique. The coating was characterized principally by using attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle analysis, while the drug release profile of ginsenosides Rg1 and Re was determined by using mass spectrometry at a one month immersion period. Full and homogenous coating coverage with acceptable wettability was found on the 30PLGA/g specimen. All specimens underwent initial burst release dependent on their composition. The 30PLGA/g and 50PLGA/g specimens demonstrated a controlled drug release profile having a combination of diffusion- and swelling-controlled mechanisms of PLGA. The study suggests that the 30PLGA/g coated specimen expresses an optimum composition which is seen as practicable for developing a controlled release drug-eluting stent.
  3. Mohamed Tap F, Abd Majid FA, Ismail HF, Wong TS, Shameli K, Miyake M, et al.
    Molecules, 2018 Jan 19;23(1).
    PMID: 29351216 DOI: 10.3390/molecules23010073
    Phospholipase A2 (Pla2) is an enzyme that induces inflammation, making Pla2 activity an effective approach to reduce inflammation. Therefore, investigating natural compounds for this Pla2 inhibitory activity has important therapeutic potential. The objective of this study was to investigate the potential in bromelain-phytochemical complex inhibitors via a combination of in silico and in vitro methods. Bromelain-amenthoflavone displays antagonistic effects on Pla2. Bromelian-asiaticoside and bromelain-diosgenin displayed synergistic effects at high concentrations of the combined compounds, with inhibition percentages of more than 70% and 90%, respectively, and antagonistic effects at low concentrations. The synergistic effect of the bromelain-asiaticoside and bromelain-diosgenin combinations represents a new application in treating inflammation. These findings not only provide significant quantitative data, but also provide an insight on valuable implications for the combined use of bromelain with asiaticoside and diosgenin in treating inflammation, and may help researchers develop more natural bioactive compounds in daily foods as anti-inflammatory agent.
  4. Ab Rahman NS, Abd Majid FA, Abd Wahid ME, Zainudin AN, Zainol SN, Ismail HF, et al.
    Drug Metab Lett, 2018;12(1):62-67.
    PMID: 29542427 DOI: 10.2174/1872312812666180314112457
    BACKGROUND: SynacinnTM contains five standardized herbal extracts of Orthosiphon Stamineus (OS), Syzygium polyanthum (SZ), Curcuma xantorrizza (CX), Cinnamomum zeylanicum (CZ) and Andrographis paniculata (AP) and is standardized against phytochemical markers of rosmarinic acid, gallic acid, curcumin, catechin and andrographolide respectively. This herbal medicine has been used as health supplement for diabetes. SynacinnTM is recommended to be consumed as supplement to the diabetic drugs. However, herb-drug interaction of SynacinnTM polyherbal with present drugs is unknown.

    METHODS: This study was designed to investigate the effect of SynacinnTM and its individual biomarkers on drug metabolizing enzymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam), CYP3A4 (Testosteron)), to assess its herb-drug interaction potential through cytochrome P450 inhibition assay. This study was conducted using liquid chromatography- tandem mass spectroscopy (LC-MS/MS) using probe substrates using human liver microsomes against CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron).

    RESULTS: Result showed that SynacinnTM at maximum concentration (5000 µg/ml) 100% inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4 (Midazolam) and CYP3A4 (Testosteron). IC50 values determined were 0.23, 0.60, 0.47, 0.78, 1.23, 0.99, 1.01, and 0.91 mg/ml for CYP 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, 3A4 (midazolam) and 3A4 (testosterone), respectively. Meanwhile, all individual biomarkers showed no, less or moderate inhibitory effect towards all the tested CYP450 except for curcumin that showed inhibition of CYP2C8 (91%), CYP2C9 (81%) and CYP2C19 (72%) at 10µM.

    CONCLUSION: Curcumin was found to be an active constituent that might contribute to the inhibition of SynacinnTM against CYP2C8, CYP2C9 and CYP2C19. It can be suggested that SynacinnTM can be consumed separately from a drug known to be metabolized by all tested CYP450 enzymes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links