Displaying all 11 publications

Abstract:
Sort:
  1. Mutlag AA, Ghani MKA, Mohammed MA, Lakhan A, Mohd O, Abdulkareem KH, et al.
    Sensors (Basel), 2021 Oct 19;21(20).
    PMID: 34696135 DOI: 10.3390/s21206923
    In the last decade, the developments in healthcare technologies have been increasing progressively in practice. Healthcare applications such as ECG monitoring, heartbeat analysis, and blood pressure control connect with external servers in a manner called cloud computing. The emerging cloud paradigm offers different models, such as fog computing and edge computing, to enhance the performances of healthcare applications with minimum end-to-end delay in the network. However, many research challenges exist in the fog-cloud enabled network for healthcare applications. Therefore, in this paper, a Critical Healthcare Task Management (CHTM) model is proposed and implemented using an ECG dataset. We design a resource scheduling model among fog nodes at the fog level. A multi-agent system is proposed to provide the complete management of the network from the edge to the cloud. The proposed model overcomes the limitations of providing interoperability, resource sharing, scheduling, and dynamic task allocation to manage critical tasks significantly. The simulation results show that our model, in comparison with the cloud, significantly reduces the network usage by 79%, the response time by 90%, the network delay by 65%, the energy consumption by 81%, and the instance cost by 80%.
  2. Al-Qazzaz NK, Alyasseri ZAA, Abdulkareem KH, Ali NS, Al-Mhiqani MN, Guger C
    Comput Biol Med, 2021 10;137:104799.
    PMID: 34478922 DOI: 10.1016/j.compbiomed.2021.104799
    Stroke is the second foremost cause of death worldwide and is one of the most common causes of disability. Several approaches have been proposed to manage stroke patient rehabilitation such as robotic devices and virtual reality systems, and researchers have found that the brain-computer interfaces (BCI) approaches can provide better results. Therefore, the most challenging tasks with BCI applications involve identifying the best technique(s) that can reveal the neuron stimulus information from the patients' brains and extracting the most effective features from these signals as well. Accordingly, the main novelty of this paper is twofold: propose a new feature fusion method for motor imagery (MI)-based BCI and develop an automatic MI framework to detect the changes pre- and post-rehabilitation. This study investigated the electroencephalography (EEG) dataset from post-stroke patients with upper extremity hemiparesis. All patients performed 25 MI-based BCI sessions with follow up assessment visits to examine the functional changes before and after EEG neurorehabilitation. In the first stage, conventional filters and automatic independent component analysis with wavelet transform (AICA-WT) denoising technique were used. Next, attributes from time, entropy and frequency domains were computed, and the effective features were combined into time-entropy-frequency (TEF) attributes. Consequently, the AICA-WT and the TEF fusion set were utilised to develop an AICA-WT-TEF framework. Then, support vector machine (SVM), k-nearest neighbours (kNN) and random forest (RF) classification technique were tested for MI-based BCI rehabilitation. The proposed AICA-WT-TEF framework with RF classifier achieves the best results compared with other classifiers. Finally, the proposed framework and feature fusion set achieve a significant performance in terms of accuracy measures compared to the state-of-the-art. Therefore, the proposed methods could be crucial for improving the process of automatic MI rehabilitation and are recommended for implementation in real-time applications.
  3. Awan MJ, Rahim MSM, Salim N, Mohammed MA, Garcia-Zapirain B, Abdulkareem KH
    Diagnostics (Basel), 2021 Jan 11;11(1).
    PMID: 33440798 DOI: 10.3390/diagnostics11010105
    The most commonly injured ligament in the human body is an anterior cruciate ligament (ACL). ACL injury is standard among the football, basketball and soccer players. The study aims to detect anterior cruciate ligament injury in an early stage via efficient and thorough automatic magnetic resonance imaging without involving radiologists, through a deep learning method. The proposed approach in this paper used a customized 14 layers ResNet-14 architecture of convolutional neural network (CNN) with six different directions by using class balancing and data augmentation. The performance was evaluated using accuracy, sensitivity, specificity, precision and F1 score of our customized ResNet-14 deep learning architecture with hybrid class balancing and real-time data augmentation after 5-fold cross-validation, with results of 0.920%, 0.916%, 0.946%, 0.916% and 0.923%, respectively. For our proposed ResNet-14 CNN the average area under curves (AUCs) for healthy tear, partial tear and fully ruptured tear had results of 0.980%, 0.970%, and 0.999%, respectively. The proposing diagnostic results indicated that our model could be used to detect automatically and evaluate ACL injuries in athletes using the proposed deep-learning approach.
  4. Mohammed MA, Al-Khateeb B, Yousif M, Mostafa SA, Kadry S, Abdulkareem KH, et al.
    Comput Intell Neurosci, 2022;2022:1307944.
    PMID: 35996653 DOI: 10.1155/2022/1307944
    Due to the COVID-19 pandemic, computerized COVID-19 diagnosis studies are proliferating. The diversity of COVID-19 models raises the questions of which COVID-19 diagnostic model should be selected and which decision-makers of healthcare organizations should consider performance criteria. Because of this, a selection scheme is necessary to address all the above issues. This study proposes an integrated method for selecting the optimal deep learning model based on a novel crow swarm optimization algorithm for COVID-19 diagnosis. The crow swarm optimization is employed to find an optimal set of coefficients using a designed fitness function for evaluating the performance of the deep learning models. The crow swarm optimization is modified to obtain a good selected coefficient distribution by considering the best average fitness. We have utilized two datasets: the first dataset includes 746 computed tomography images, 349 of them are of confirmed COVID-19 cases and the other 397 are of healthy individuals, and the second dataset are composed of unimproved computed tomography images of the lung for 632 positive cases of COVID-19 with 15 trained and pretrained deep learning models with nine evaluation metrics are used to evaluate the developed methodology. Among the pretrained CNN and deep models using the first dataset, ResNet50 has an accuracy of 91.46% and a F1-score of 90.49%. For the first dataset, the ResNet50 algorithm is the optimal deep learning model selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5715.988 for COVID-19 computed tomography lung images case considered differential advancement. In contrast, the VGG16 algorithm is the optimal deep learning model is selected as the ideal identification approach for COVID-19 with the closeness overall fitness value of 5758.791 for the second dataset. Overall, InceptionV3 had the lowest performance for both datasets. The proposed evaluation methodology is a helpful tool to assist healthcare managers in selecting and evaluating the optimal COVID-19 diagnosis models based on deep learning.
  5. Al-Waisy AS, Al-Fahdawi S, Mohammed MA, Abdulkareem KH, Mostafa SA, Maashi MS, et al.
    Soft comput, 2023;27(5):2657-2672.
    PMID: 33250662 DOI: 10.1007/s00500-020-05424-3
    The outbreaks of Coronavirus (COVID-19) epidemic have increased the pressure on healthcare and medical systems worldwide. The timely diagnosis of infected patients is a critical step to limit the spread of the COVID-19 epidemic. The chest radiography imaging has shown to be an effective screening technique in diagnosing the COVID-19 epidemic. To reduce the pressure on radiologists and control of the epidemic, fast and accurate a hybrid deep learning framework for diagnosing COVID-19 virus in chest X-ray images is developed and termed as the COVID-CheXNet system. First, the contrast of the X-ray image was enhanced and the noise level was reduced using the contrast-limited adaptive histogram equalization and Butterworth bandpass filter, respectively. This was followed by fusing the results obtained from two different pre-trained deep learning models based on the incorporation of a ResNet34 and high-resolution network model trained using a large-scale dataset. Herein, the parallel architecture was considered, which provides radiologists with a high degree of confidence to discriminate between the healthy and COVID-19 infected people. The proposed COVID-CheXNet system has managed to correctly and accurately diagnose the COVID-19 patients with a detection accuracy rate of 99.99%, sensitivity of 99.98%, specificity of 100%, precision of 100%, F1-score of 99.99%, MSE of 0.011%, and RMSE of 0.012% using the weighted sum rule at the score-level. The efficiency and usefulness of the proposed COVID-CheXNet system are established along with the possibility of using it in real clinical centers for fast diagnosis and treatment supplement, with less than 2 s per image to get the prediction result.
  6. Abdulkareem KH, Mostafa SA, Al-Qudsy ZN, Mohammed MA, Al-Waisy AS, Kadry S, et al.
    J Healthc Eng, 2022;2022:5329014.
    PMID: 35368962 DOI: 10.1155/2022/5329014
    Coronavirus disease 2019 (COVID-19) is a novel disease that affects healthcare on a global scale and cannot be ignored because of its high fatality rate. Computed tomography (CT) images are presently being employed to assist doctors in detecting COVID-19 in its early stages. In several scenarios, a combination of epidemiological criteria (contact during the incubation period), the existence of clinical symptoms, laboratory tests (nucleic acid amplification tests), and clinical imaging-based tests are used to diagnose COVID-19. This method can miss patients and cause more complications. Deep learning is one of the techniques that has been proven to be prominent and reliable in several diagnostic domains involving medical imaging. This study utilizes a convolutional neural network (CNN), stacked autoencoder, and deep neural network to develop a COVID-19 diagnostic system. In this system, classification undergoes some modification before applying the three CT image techniques to determine normal and COVID-19 cases. A large-scale and challenging CT image dataset was used in the training process of the employed deep learning model and reporting their final performance. Experimental outcomes show that the highest accuracy rate was achieved using the CNN model with an accuracy of 88.30%, a sensitivity of 87.65%, and a specificity of 87.97%. Furthermore, the proposed system has outperformed the current existing state-of-the-art models in detecting the COVID-19 virus using CT images.
  7. Mohammed MA, Abdulhasan MJ, Kumar NM, Abdulkareem KH, Mostafa SA, Maashi MS, et al.
    Multimed Tools Appl, 2022 Jul 28.
    PMID: 35915808 DOI: 10.1007/s11042-021-11537-0
    Waste generation in smart cities is a critical issue, and the interim steps towards its management were not that effective. But at present, the challenge of meeting recycling requirements due to the practical difficulty involved in waste sorting decelerates smart city CE vision. In this paper, a digital model that automatically sorts the generated waste and classifies the type of waste as per the recycling requirements based on an artificial neural network (ANN) and features fusion techniques is proposed. In the proposed model, various features extracted using image processing are combined to develop a sophisticated classifier. Based on the different features, different models are built, and each model produces a single decision. Besides, the kind of class is determined using machine learning. The model is validated by extracting relevant information from the dataset containing 2400 images of possible waste types recycled across three categories. Based on the analysis, it is observed that the proposed model achieved an accuracy of 91.7%, proving its ability to sort and classify the waste as per the recycling requirements automatically. Overall, this analysis suggests that a digital-enabled CE vision could improve the waste sorting services and recycling decisions across the value chain in smart cities.
  8. Mohammed MA, Lakhan A, Abdulkareem KH, Abd Ghani MK, Marhoon HA, Kadry S, et al.
    J Adv Res, 2023 Oct 13.
    PMID: 37839503 DOI: 10.1016/j.jare.2023.10.005
    INTRODUCTION: The Industrial Internet of Water Things (IIoWT) has recently emerged as a leading architecture for efficient water distribution in smart cities. Its primary purpose is to ensure high-quality drinking water for various institutions and households. However, existing IIoWT architecture has many challenges. One of the paramount challenges in achieving data standardization and data fusion across multiple monitoring institutions responsible for assessing water quality and quantity.

    OBJECTIVE: This paper introduces the Industrial Internet of Water Things System for Data Standardization based on Blockchain and Digital Twin Technology. The main objective of this study is to design a new IIoWT architecture where data standardization, interoperability, and data security among different water institutions must be met.

    METHODS: We devise the digital twin-enabled cross-platform environment using the Message Queuing Telemetry Transport (MQTT) protocol to achieve seamless interoperability in heterogeneous computing. In water management, we encounter different types of data from various sensors. Therefore, we propose a CNN-LSTM and blockchain data transactional (BCDT) scheme for processing valid data across different nodes.

    RESULTS: Through simulation results, we demonstrate that the proposed IIoWT architecture significantly reduces processing time while improving the accuracy of data standardization within the water distribution management system.

    CONCLUSION: Overall, this paper presents a comprehensive approach to tackle the challenges of data standardization and security in the IIoWT architecture.

  9. Alyasseri ZAA, Al-Betar MA, Doush IA, Awadallah MA, Abasi AK, Makhadmeh SN, et al.
    Expert Syst, 2021 Jul 28.
    PMID: 34511689 DOI: 10.1111/exsy.12759
    COVID-19 is the disease evoked by a new breed of coronavirus called the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recently, COVID-19 has become a pandemic by infecting more than 152 million people in over 216 countries and territories. The exponential increase in the number of infections has rendered traditional diagnosis techniques inefficient. Therefore, many researchers have developed several intelligent techniques, such as deep learning (DL) and machine learning (ML), which can assist the healthcare sector in providing quick and precise COVID-19 diagnosis. Therefore, this paper provides a comprehensive review of the most recent DL and ML techniques for COVID-19 diagnosis. The studies are published from December 2019 until April 2021. In general, this paper includes more than 200 studies that have been carefully selected from several publishers, such as IEEE, Springer and Elsevier. We classify the research tracks into two categories: DL and ML and present COVID-19 public datasets established and extracted from different countries. The measures used to evaluate diagnosis methods are comparatively analysed and proper discussion is provided. In conclusion, for COVID-19 diagnosing and outbreak prediction, SVM is the most widely used machine learning mechanism, and CNN is the most widely used deep learning mechanism. Accuracy, sensitivity, and specificity are the most widely used measurements in previous studies. Finally, this review paper will guide the research community on the upcoming development of machine learning for COVID-19 and inspire their works for future development. This review paper will guide the research community on the upcoming development of ML and DL for COVID-19 and inspire their works for future development.
  10. Albahri OS, Al-Obaidi JR, Zaidan AA, Albahri AS, Zaidan BB, Salih MM, et al.
    Comput Methods Programs Biomed, 2020 Nov;196:105617.
    PMID: 32593060 DOI: 10.1016/j.cmpb.2020.105617
    CONTEXT: People who have recently recovered from the threat of deteriorating coronavirus disease-2019 (COVID-19) have antibodies to the coronavirus circulating in their blood. Thus, the transfusion of these antibodies to deteriorating patients could theoretically help boost their immune system. Biologically, two challenges need to be surmounted to allow convalescent plasma (CP) transfusion to rescue the most severe COVID-19 patients. First, convalescent subjects must meet donor selection plasma criteria and comply with national health requirements and known standard routine procedures. Second, multi-criteria decision-making (MCDM) problems should be considered in the selection of the most suitable CP and the prioritisation of patients with COVID-19.

    OBJECTIVE: This paper presents a rescue framework for the transfusion of the best CP to the most critical patients with COVID-19 on the basis of biological requirements by using machine learning and novel MCDM methods.

    METHOD: The proposed framework is illustrated on the basis of two distinct and consecutive phases (i.e. testing and development). In testing, ABO compatibility is assessed after classifying donors into the four blood types, namely, A, B, AB and O, to indicate the suitability and safety of plasma for administration in order to refine the CP tested list repository. The development phase includes patient and donor sides. In the patient side, prioritisation is performed using a contracted patient decision matrix constructed between 'serological/protein biomarkers and the ratio of the partial pressure of oxygen in arterial blood to fractional inspired oxygen criteria' and 'patient list based on novel MCDM method known as subjective and objective decision by opinion score method'. Then, the patients with the most urgent need are classified into the four blood types and matched with a tested CP list from the test phase in the donor side. Thereafter, the prioritisation of CP tested list is performed using the contracted CP decision matrix.

    RESULT: An intelligence-integrated concept is proposed to identify the most appropriate CP for corresponding prioritised patients with COVID-19 to help doctors hasten treatments.

    DISCUSSION: The proposed framework implies the benefits of providing effective care and prevention of the extremely rapidly spreading COVID-19 from affecting patients and the medical sector.

  11. Albahri OS, Zaidan AA, Albahri AS, Zaidan BB, Abdulkareem KH, Al-Qaysi ZT, et al.
    J Infect Public Health, 2020 Oct;13(10):1381-1396.
    PMID: 32646771 DOI: 10.1016/j.jiph.2020.06.028
    This study presents a systematic review of artificial intelligence (AI) techniques used in the detection and classification of coronavirus disease 2019 (COVID-19) medical images in terms of evaluation and benchmarking. Five reliable databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus were used to obtain relevant studies of the given topic. Several filtering and scanning stages were performed according to the inclusion/exclusion criteria to screen the 36 studies obtained; however, only 11 studies met the criteria. Taxonomy was performed, and the 11 studies were classified on the basis of two categories, namely, review and research studies. Then, a deep analysis and critical review were performed to highlight the challenges and critical gaps outlined in the academic literature of the given subject. Results showed that no relevant study evaluated and benchmarked AI techniques utilised in classification tasks (i.e. binary, multi-class, multi-labelled and hierarchical classifications) of COVID-19 medical images. In case evaluation and benchmarking will be conducted, three future challenges will be encountered, namely, multiple evaluation criteria within each classification task, trade-off amongst criteria and importance of these criteria. According to the discussed future challenges, the process of evaluation and benchmarking AI techniques used in the classification of COVID-19 medical images considered multi-complex attribute problems. Thus, adopting multi-criteria decision analysis (MCDA) is an essential and effective approach to tackle the problem complexity. Moreover, this study proposes a detailed methodology for the evaluation and benchmarking of AI techniques used in all classification tasks of COVID-19 medical images as future directions; such methodology is presented on the basis of three sequential phases. Firstly, the identification procedure for the construction of four decision matrices, namely, binary, multi-class, multi-labelled and hierarchical, is presented on the basis of the intersection of evaluation criteria of each classification task and AI classification techniques. Secondly, the development of the MCDA approach for benchmarking AI classification techniques is provided on the basis of the integrated analytic hierarchy process and VlseKriterijumska Optimizacija I Kompromisno Resenje methods. Lastly, objective and subjective validation procedures are described to validate the proposed benchmarking solutions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links