A novel hybrid Harris Hawk-Arithmetic Optimization Algorithm (HHAOA) for optimizing the Industrial Wireless Mesh Networks (WMNs) and real-time pressure process control was proposed in this research article. The proposed algorithm uses inspiration from Harris Hawk Optimization and the Arithmetic Optimization Algorithm to improve position relocation problems, premature convergence, and the poor accuracy the existing techniques face. The HHAOA algorithm was evaluated on various benchmark functions and compared with other optimization algorithms, namely Arithmetic Optimization Algorithm, Moth Flame Optimization, Sine Cosine Algorithm, Grey Wolf Optimization, and Harris Hawk Optimization. The proposed algorithm was also applied to a real-world industrial wireless mesh network simulation and experimentation on the real-time pressure process control system. All the results demonstrate that the HHAOA algorithm outperforms different algorithms regarding mean, standard deviation, convergence speed, accuracy, and robustness and improves client router connectivity and network congestion with a 31.7% reduction in Wireless Mesh Network routers. In the real-time pressure process, the HHAOA optimized Fractional-order Predictive PI (FOPPI) Controller produced a robust and smoother control signal leading to minimal peak overshoot and an average of a 53.244% faster settling. Based on the results, the algorithm enhanced the efficiency and reliability of industrial wireless networks and real-time pressure process control systems, which are critical for industrial automation and control applications.
Wireless technology is becoming increasingly critical in industrial environments in recent years, and the popular wireless standards are WirelessHART, ZigBee, WLAN and ISA100.11a, commonly used in closed-loop systems. However, wireless networks in closed-loop control experience packet loss or drops, system delay and data threats, leading to process instability and catastrophic system failure. To prevent such issues, it is necessary to implement dead-time compensation control. Traditional techniques like model predictive and predictive PI controllers are frequently employed. However, these methods' performance is sluggish in wireless networks, with processes having long dead times and set-point variations, potentially affecting network and process performance. Therefore, this paper proposes a fractional calculus-based predictive PI compensator for wired and wireless networks in the process control industries. The proposed technique has been simulated and evaluated on industrial process models, including pressure, flow, and temperature, where measurement and control are carried out wirelessly. The wireless network's performance has been evaluated based on packet loss, reduced throughput, and increased system latency. The proposed compensator outperformed traditional methods, demonstrating superior set-point tracking, disturbance rejection, and delay compensation characteristics in the performance evaluations of the first, second, and third-order systems. Overall, the findings indicate that the proposed compensator enhances wireless networks' performance in the process control industry and improves system stability and reliability by reducing almost half of the overshoot and settling an average of 8.3927% faster than the conventional techniques in most of the systems.
Wireless mesh networks (WMNs) play a vital role in modern communication systems, and optimizing the placement of wireless mesh routers is crucial for achieving efficient network performance in terms of coverage and connectivity. However, network congestion caused by overlapping routers poses challenges in WMN optimization. To address these issues, researchers have explored metaheuristic algorithms to strike a balance between coverage and connectivity in WMNs. This study introduces a novel hybrid optimization algorithm, namely Transient Trigonometric Harris Hawks Optimizer (TTHHO), specifically designed to tackle the optimization problems in WMNs. The primary objective of TTHHO is to find an optimal placement of routers that maximizes network coverage and ensures full connectivity among mesh routers. Notably, TTHHO's unique advantage lies in its efficient utilization of residual energy, strategically placing the sink node in areas with higher energy levels. The effectiveness of TTHHO is demonstrated through a comprehensive comparison with seven well-known algorithms, including Harris Hawks optimization (HHO), Sine Cosine Algorithm (SCA), Gray Wolf Optimization (GWO), Particle Swarm Optimization (PSO), Moth Flame Optimization (MFO), Equilibrium Optimizer (EO), and Transient Search Optimizer (TSO). The proposed algorithm is rigorously validated using 33 benchmark functions, and statistical analyses and simulation results confirm its superiority over other algorithms in terms of network connectivity, coverage, congestion reduction, and convergence. The simulation outcomes demonstrate the effectiveness and efficacy of the proposed TTHHO algorithm in optimizing WMNs, making it a promising approach for enhancing the performance of wireless communication systems.