Displaying all 19 publications

Abstract:
Sort:
  1. Abu Amr SS, Aziz HA
    Waste Manag, 2012 Sep;32(9):1693-8.
    PMID: 22633680 DOI: 10.1016/j.wasman.2012.04.009
    Ozonation, combined with the Fenton process (O(3)/H(2)O(2)/Fe(2+)), was used to treat matured landfill leachate. The effectiveness of the Fenton molar ratio, Fenton concentration, pH variance, and reaction time were evaluated under optimum operational conditions. The optimum removal values of chemical oxygen demand (COD), color, and NH(3)-N were found to be 65%, 98%, and 12%, respectively, for 90 min of ozonation using a Fenton molar ratio of 1 at a Fenton concentration of 0.05 mol L(-1) (1700 mg/L) H(2)O(2) and 0.05 mol L(-1) (2800 mg/L) Fe(2+) at pH 7. The maximum removal of NH(3)-N was 19% at 150 min. The ozone consumption for COD removal was 0.63 kg O(3)/kg COD. To evaluate the effectiveness, the results obtained in the treatment of stabilized leachate were compared with those obtained from other treatment processes, such as ozone alone, Fenton reaction alone, as well as combined Fenton and ozone. The combined method (i.e., O(3)/H(2)O(2)/Fe(2+)) achieved higher removal efficiencies for COD, color, and NH(3)-N compared with other studied applications.
  2. Abu Amr SS, Aziz HA, Adlan MN
    Waste Manag, 2013 Jun;33(6):1434-41.
    PMID: 23498721 DOI: 10.1016/j.wasman.2013.01.039
    The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): COD, color, NH3-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m(3) ozone, 1g/1g COD0/S2O8(2-) ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH3-N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O3/kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S2O8(2-) only, to evaluate its effectiveness. The combined method (i.e., O3/S2O8(2-)) achieved higher removal efficiencies for COD, color, and NH3-N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate.
  3. Aziz HA, Othman OM, Abu Amr SS
    Waste Manag, 2013 Feb;33(2):396-400.
    PMID: 23158874 DOI: 10.1016/j.wasman.2012.10.016
    Leachate pollution is one of the main problems in landfilling. Researchers have yet to find an effective solution to this problem. The technology that can be used may differ based on the type of leachate produced. Coliform bacteria were recently reported as one of the most problematic pollutants in semi-aerobic (stabilized) leachate. In the present study, the performance of the Electro-Fenton process in removing coliform from leachate was investigated. The study focused on two types of leachate: Palau Borung landfill leachate with low Coliform content (200 MPN/100 m/L) and Ampang Jajar landfill leachate with high coliform content (>24 × 10(4)MPN/100 m/L). Optimal conditions for the Electro-Fenton treatment process were applied on both types of leachate. Then, the coliform was examined before and after treatment using the Most Probable Number (MPN) technique. Accordingly, 100% removal of coliform was obtained at low initial coliform content, whereas 99.9% removal was obtained at high initial coliform content. The study revealed that Electro-Fenton is an efficient process in removing high concentrations of pathogenic microorganisms from stabilized leachate.
  4. Alslaibi TM, Abunada Z, Abu Amr SS, Abustan I
    Environ Technol, 2018 Nov;39(21):2691-2702.
    PMID: 28789588 DOI: 10.1080/09593330.2017.1365936
    Landfills are one of the main point sources of groundwater pollution. This research mainly aims to assess the risk of nitrate [Formula: see text] transport from the unlined landfill to subsurface layers and groundwater using experimental results and the SESOIL model. Samples from 12 groundwater wells downstream of the landfill were collected and analyzed in 2008, 21 years after the landfill construction. The average [Formula: see text] concentration in the wells was 54 mg/L, slightly higher than the World Health Organization ([Formula: see text] 50 mg/L) standards. SESOIL model was used to predict the [Formula: see text] concentration at the bottom of the unsaturated zone. Results indicated that the current mean [Formula: see text] concentration at the bottom of the unsaturated zone is 75 mg/L. the model predicted that the level of NO3 will increased up to 325 mg/L within 30 years. Accordingly, the [Formula: see text] concentration in groundwater wells near the landfill area is expected to gradually increase with time. Although the current risk associated with the [Formula: see text] level might not be harm to adults, however, it might pose severe risks to both adults and infants in the near future due to [Formula: see text] leaching. Urgent mitigation measures such as final cell cover (cap), lining system and vertical expansion should be considered at the landfill to protect the public health in the area.
  5. Abu Amr SS, Aziz HA, Adlan MN, Bashir MJ
    PMID: 23445415 DOI: 10.1080/10934529.2013.744611
    The objective of this study was to investigate the performance of employing Fenton's reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and Fenton dosage, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD), color, NH-N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 90 min, 30 g/m³ ozone, 0.01 mol/L₂H₂O,0.02 mol/L Fe²⁺, and pH 5. COD, color, and NH₃-N removal rates of 79%, 100%, and 20%, respectively, and 0.18 kg O₃/kg COD OC were obtained. The predictions correspond well with experimental results (COD, color, and NH-N removal rates of 78%, 98.5%, and 19%, respectively, and 0.29 kg O₃/kg COD OC). This method reduces the treatment time and improves the treatment efficiency relative to a previously published method that used Fenton's reagent prior to ozonation.
  6. Hilles AH, Abu Amr SS, Hussein RA, El-Sebaie OD, Arafa AI
    J Environ Manage, 2016 Jan 15;166:493-8.
    PMID: 26580899 DOI: 10.1016/j.jenvman.2015.10.051
    A combination of persulfate and hydrogen peroxide (S2O8(2-)/H2O2) was used to oxidizelandfill leachate. The reaction was performed under varying S2O8(2-)/H2O2 ratio (g/g), S2O8(2-)/H2O2 dosages (g/g), pH, and reaction time (minutes), so as to determine the optimum operational conditions. Results indicated that under optimum operational conditions (i.e. 120 min of oxidation using a S2O8(2-)/H2O2 ratio of 1 g/1.47 g at a persulfate and hydrogen peroxide dosage of 5.88 g/50 ml and8.63 g/50 ml respectively, at pH 11) removal of 81% COD and 83% NH3-N was achieved. In addition, the biodegradability (BOD5/COD ratio) of the leachate was improved from 0.09 to 0.17. The results obtained from the combined use of (S2O8(2-)/H2O2) were compared with those obtained with sodium persulfate only, hydrogen peroxide only and sodium persulfate followed by hydrogen peroxide. The combined method (S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with the other methods using a single oxidizing agent. Additionally, the study has proved that the combination of S2O8(2-)/H2O2 is more efficient than the sequential use of sodium persulfate followed by hydrogen peroxide in advanced oxidation processes aiming at treatingstabilizedlandfill leachate.
  7. Bashir MJ, Mau Han T, Jun Wei L, Choon Aun N, Abu Amr SS
    Water Sci Technol, 2016;73(11):2704-12.
    PMID: 27232407 DOI: 10.2166/wst.2016.123
    As the ponding system used to treat palm oil mill effluent (POME) frequently fails to satisfy the discharge standard in Malaysia, the present study aimed to resolve this problem using an optimized electrocoagulation process. Thus, a central composite design (CCD) module in response surface methodology was employed to optimize the interactions of process variables, namely current density, contact time and initial pH targeted on maximum removal of chemical oxygen demand (COD), colour and turbidity with satisfactory pH of discharge POME. The batch study was initially designed by CCD and statistical models of responses were subsequently derived to indicate the significant terms of interactive process variables. All models were verified by analysis of variance showing model significances with Prob > F < 0.01. The optimum performance was obtained at the current density of 56 mA/cm(2), contact time of 65 min and initial pH of 4.5, rendering complete removal of colour and turbidity with COD removal of 75.4%. The pH of post-treated POME of 7.6 was achieved, which is suitable for direct discharge. These predicted outputs were subsequently confirmed by insignificant standard deviation readings between predicted and actual values. This optimum condition also permitted the simultaneous removal of NH3-N, and various metal ions, signifying the superiority of the electrocoagulation process optimized by CCD.
  8. Hamouda HI, Nassar HN, Madian HR, Abu Amr SS, El-Gendy NSh
    Biotechnol Res Int, 2015;2015:905792.
    PMID: 26779347 DOI: 10.1155/2015/905792
    Pichia veronae strain HSC-22 (accession number KP012558) showed a good tolerance to relatively high temperature, ethanol and sugar concentrations. Response surface optimization based on central composite design of experiments predicted the optimal values of the influencing parameters that affect the production of bioethanol from sugarcane molasses to be as follows: initial pH 5, 25% (w : v) initial molasses concentration, 35°C, 116 rpm, and 60 h. Under these optimum operating conditions the maximum bioethanol production on a batch fermenter scale was recorded as 32.32 g/L with 44% bioethanol yield.
  9. Hilles AH, Abu Amr SS, Hussein RA, Arafa AI, El-Sebaie OD
    Water Sci Technol, 2016;73(1):102-12.
    PMID: 26744940 DOI: 10.2166/wst.2015.468
    The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O8(2-), 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O8(2-)/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.
  10. Hilles AH, Abu Amr SS, Hussein RA, Arafa AI, El-Sebaie OD
    Waste Manag, 2015 Oct;44:172-7.
    PMID: 26248486 DOI: 10.1016/j.wasman.2015.07.046
    The current study investigated the effects of S2O8(2-) and S2O8(2-)/H2O2 oxidation processes on the biodegradable characteristics of an anaerobic stabilized leachate. Total COD removal efficiency was found to be 46% after S2O8(2-) oxidation (using 4.2 g S2O8(2-)/1g COD0, at pH 7, for 60 min reaction time and at 350 rpm shaking speed), and improved to 81% following S2O8(2-)/H2O2 oxidation process (using 5.88 g S2O8(2-) dosage, 8.63 g H2O2 dosage, at pH 11 and for 120 min reaction time at 350 rpm). Biodegradability in terms of BOD5/COD ratio of the leachate enhanced from 0.09 to 0.1 and to 0.17 following S2O8(2-) and S2O8(2-)/H2O2 oxidation processes, respectively. The fractions of COD were determined before and after each oxidation processes (S2O8(2-) and S2O8(2-)/H2O2). The fraction of biodegradable COD(bi) increased from 36% in raw leachate to 57% and 68% after applying S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. As for soluble COD(s), its removal efficiency was 39% and 78% following S2O8(2-) and S2O8(2-)/H2O2 oxidation, respectively. The maximum removal for particulate COD was 94% and was obtained after 120 min of S2O8(2-)/H2O2 oxidation. As a conclusion, S2O8(2-)/H2O2 oxidation could be an efficient method for improving the biodegradability of anaerobic stabilized leachate.
  11. Alkarkhi AFM, Alqaraghuli WAA, Yusup Y, Abu Amr SS, Mahmud MN, Dewayantoa N
    Data Brief, 2019 Jun;24:103894.
    PMID: 31011604 DOI: 10.1016/j.dib.2019.103894
    This article presents data relating to the changes in absorbance of glucose during the acid hydrolysis of sugarcane bagasse using sulphuric acid. This dataset also contains the moisture content, volatile matter, and fixed carbon of the sugarcane bagasse. The results of the analysis of variance (ANOVA) and the interaction plots between reaction time, temperature, and ratio are also presented. The data revealed that absorbance of glucose is increasing by increasing the temperature and time. Moreover, the best ratio for the highest absorbance of glucose was achieved at 1:20.
  12. Aljuboury DA, Palaniandy P, Abdul Aziz HB, Feroz S, Abu Amr SS
    Water Sci Technol, 2016 Sep;74(6):1312-1325.
    PMID: 27685961
    The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO2/ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
  13. Abu Amr SS, Alkarkhi AFM, Alslaibi TM, Abujazar MSS
    Data Brief, 2018 Aug;19:951-958.
    PMID: 29900392 DOI: 10.1016/j.dib.2018.05.111
    Although landfilling is still the most suitable method for solid waste disposal, generation of large quantity of leachate is still considered as one of the main environmental problem. Efficient treatment of leachate is required prior to final discharge. Persulfate (S2O82-) recently used for leachate oxidation, the oxidation potential of persulfate can be improved by activate and initiate sulfate radical. The current data aimed to evaluate the performance of utilizing Al2SO4 reagent for activation of persulfate to treat landfill leachate. The data on chemical oxygen demand (COD), color, and NH3-H removals at different setting of the persulfate, Al2SO4 dosages, pH, and reaction time were collected using a central composite design (CCD) were measured to identify the optimum operating conditions. A total of 30 experiments were performed, the optimum conditions for S2O82-/Al2SO4 oxidation process was obtained. Quadratic models for chemical oxygen demand (COD), color, and NH3-H removals were significant with p-value 
  14. Bashir MJK, Wei CJ, Aun NC, Abu Amr SS
    J Environ Manage, 2017 May 15;193:458-469.
    PMID: 28262420 DOI: 10.1016/j.jenvman.2017.02.031
    Malaysia alone produces more than 49 million m3 palm oil mill effluent per year. Biological treated palm oil mill effluent via ponding system often fails to fulfill the regulatory discharge standards. This is due to remaining of non-biodegradable organics in the treated effluent. Thus, the aim of this study was to resolve such issue by using electro persulphate oxidation process, for the first time, as a post treatment of palm oil mill effluent. Central composite design in response surface methodology was used to analyze and optimize the interaction of operational variables (i.e., current density, contact time, initial pH and persulphate dosage) targeted on maximum treatment efficiency. The significance of quadratic model of each response was determined by analysis of variance, where all models indicated sufficient significance with p-value 
  15. Lin CK, Bashir MJ, Abu Amr SS, Sim LC
    Water Sci Technol, 2016 Dec;74(11):2675-2682.
    PMID: 27973372
    The aim of the current study is to evaluate the effectiveness of combined persulphate with hydrogen peroxide (S2O8(2-)/H2O2) oxidation as a post-treatment of biologically treated palm oil mill effluent (POME) for the first time in the literature. The removal efficiencies of chemical oxygen demand (COD), ammoniacal nitrogen (NH3-N), and suspended solids (SS) were 36.8%, 47.6%, and 90.6%, respectively, by S2O8(2-) oxidation alone under certain operation conditions (i.e., S2O8(2-) = 0.82 g, pH 11, and contact time 20 min). Nevertheless, the combined process (S2O8(2-)/H2O2) achieved 75.8% and 87.1% removals of NH3-N and SS, respectively, under 2.45/1.63 g/g H2O2/S2O8(2-), pH 11, and 20 min oxidation. Moreover, 56.9% of COD was removed at pH 8.4.
  16. Ulutaş K, Abujayyab SKM, Abu Amr SS, Alkarkhi AFM, Duman S
    Theor Appl Climatol, 2023;152(1-2):801-812.
    PMID: 37016660 DOI: 10.1007/s00704-023-04420-5
    Different health management strategies may need to be implemented in different regions to cope with diseases. The current work aims to evaluate the relationship between air quality parameters and the number of new COVID-19 cases in two different geographical locations, namely Western Anatolia and Western Black Sea in Turkey. Principal component analysis (PCA) and regression model were utilized to describe the effect of environmental parameters (air quality and meteorological parameters) on the number of new COVID-19 cases. A big difference in the mean values for all air quality parameters has appeared between the two areas. Two regression models were developed and showed a significant relationship between the number of new cases and the selected environmental parameters. The results showed that wind speed, SO2, CO, NOX, and O3 are not influential variable and does not affect the number of new cases of COVID-19 in the Western Black Sea area, while only wind speed, SO2, CO, NOX, and O3 are influential parameters on the number of new cases in Western Anatolia. Although the environmental parameters behave differently in each region, these results revealed that the relationship between the air quality parameters and the number of new cases is significant.
  17. Banch TJH, Hanafiah MM, Alkarkhi AFM, Abu Amr SS
    Polymers (Basel), 2019 Aug 14;11(8).
    PMID: 31416151 DOI: 10.3390/polym11081349
    In this study, tannin-based natural coagulant was used to treat stabilized landfill leachate. Tannin modified with amino group was utilized for the treatment process. Central composite design (CCD) was used to investigate and optimize the effect of tannin dosage and pH on four responses. The treatment efficiency was evaluated based on the removal of four selected (responses) parameters; namely, chemical oxygen demand (COD), color, NH3-N and total suspended solids (TSS). The optimum removal efficiency for COD, TSS, NH3-N and color was obtained using a tannin dosage of 0.73 g at a pH of 6. Moreover, the removal efficiency for selected heavy metals from leachate; namely, iron (Fe2+), zinc (Zn2+), copper (Cu2+), chromium (Cr2+), cadmium (Cd2+), lead (Pb2+), arsenic (As3+), and cobalt (Co2+) was also investigated. The results for removal efficiency for COD, TSS, NH3-N, and color were 53.50%, 60.26%, and 91.39%, respectively. The removal of selected heavy metals from leachate for Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb2+, As3+ and cobalt Co2+ were 89.76%, 94.61%, 94.15%, 89.94%, 17.26%, 93.78%, 86.43% and 84.19%, respectively. The results demonstrate that tannin-based natural coagulant could effectively remove organic compounds and heavy metals from stabilized landfill leachate.
  18. Aziz HA, Razak MHA, Rahim MZA, Kamar WISW, Abu Amr SS, Hussain S, et al.
    Data Brief, 2018 Jun;18:920-927.
    PMID: 29900259 DOI: 10.1016/j.dib.2018.03.113
    Wastewater treatment is a key challenge in the textile industry. The current treatment methods for textile wastewater are insufficient or ineffective for complex dyes generated from the textile industry. This study evaluated the performances of two novel inorganic coagulants with high cationic charges, namely, titanium tetrachloride (TiCl4) and zirconium tetrachloride (ZrCl4). They were utilised to treat textile industry wastewater. Both coagulation processes were performed under the same experimental operational conditions. Turbidity, suspended solids (SS), colour, chemical oxygen demand (COD) and ammonia were measured to assess the efficiencies of the coagulants. Results indicated that ZrCl4 and TiCl4 exhibited high potentials for textile wastewater treatment. ZrCl4 presented high removal efficiency in COD and SS, whereas TiCl4 showed excellent removal in ammonia.
  19. Alazaiza MYD, Albahnasawi A, Ahmad Z, Bashir MJK, Al-Wahaibi T, Abujazar MSS, et al.
    J Environ Manage, 2022 Dec 15;324:116415.
    PMID: 36206653 DOI: 10.1016/j.jenvman.2022.116415
    Remediation by algae is a very effective strategy for avoiding the use of costly, environmentally harmful chemicals in wastewater treatment. Recently, industries based on biomass, especially the bioenergy sector, are getting increasing attention due to their environmental acceptability. However, their practical application is still limited due to the growing cost of raw materials such as algal biomass, harvesting and processing limitations. Potential use of algal biomass includes nutrients recovery, heavy metals removal, COD, BOD, coliforms, and other disease-causing pathogens reduction and production of bioenergy and valuable products. However, the production of algal biomass using the variable composition of different wastewater streams as a source of growing medium and the application of treated water for subsequent use in agriculture for irrigation has remained a challenging task. The present review highlights and discusses the potential role of algae in removing beneficial nutrients from different wastewater streams with complex chemical compositions as a biorefinery concept and subsequent use of produced algal biomass for bioenergy and bioactive compounds. Moreover, challenges in producing algal biomass using various wastewater streams and ways to alleviate the stress caused by the toxic and high concentrations of nutrients in the wastewater stream have been discussed in detail. The technology will be economically feasible and publicly accepted by reducing the cost of algal biomass production and reducing the loaded or attached concentration of micropollutants and pathogenic microorganisms. Algal strain improvement, consortium development, biofilm formation, building an advanced cultivation reactor system, biorefinery concept development, and life-cycle assessment are all possible options for attaining a sustainable solution for sustainable biofuel production. Furthermore, producing valuable compounds, including pharmaceutical, nutraceutical and pigment contents generated from algal biomass during biofuel production, could also help reduce the cost of wastewater management by microalgae.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links