Displaying all 3 publications

Abstract:
Sort:
  1. Ahmady A, Abu Samah NH
    Int J Pharm, 2021 Oct 25;608:121037.
    PMID: 34438009 DOI: 10.1016/j.ijpharm.2021.121037
    Bioadhesive polymers offer versatility to medical and pharmaceutical inventions. The incorporation of such materials to conventional dosage forms or medical devices may confer or improve the adhesivity of the bioadhesive systems, subsequently prolonging their residence time at the site of absorption or action and providing sustained release of actives with improved bioavailability and therapeutic outcomes. For decades, much focus has been put on scientific works to replace synthetic polymers with biopolymers with desirable functional properties. Gelatine has been considered one of the most promising biopolymers. Despite its biodegradability, biocompatibility and unique biological properties, gelatine exhibits poor mechanical and adhesive properties, limiting its end-use applications. The chemical modification and blending of gelatine with other biomaterials are strategies proposed to improve its bioadhesivity. Here we discuss the classical approaches involving a variety of polymer blends and composite systems containing gelatine, and gelatine modifications via thiolation, methacrylation, catechol conjugation, amination and other newly devised strategies. We highlight several of the latest studies on these strategies and their relevant findings.
  2. Sheshala R, Anuar NK, Abu Samah NH, Wong TW
    AAPS PharmSciTech, 2019 Apr 15;20(5):164.
    PMID: 30993407 DOI: 10.1208/s12249-019-1362-7
    This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
  3. Hussain M, Sahudin S, Abu Samah NH, Anuar NK
    Saudi Pharm J, 2019 Feb;27(2):274-282.
    PMID: 30766440 DOI: 10.1016/j.jsps.2018.11.009
    OBJECTIVE: To investigate students perception of an industry based approach problem based learning (PBL) and their performance in drug delivery courses in pharmaceutics.

    METHODS: PBL was implemented within two drug delivery courses in 2015, in anticipation that the use of formulation or industrial instead of clinical or pharmacy practice based triggers, would open up student interest and understanding towards learning pharmaceutics in relation to industrial pharmacy. Two cohorts were monitored through final year examination results and PBL feedback to evaluate student perception and acceptance of the use of PBL. Previous cohorts were only exposed to conventional tutorials.

    RESULTS: Both cohorts showed better performance in their final examination results (2015 & 2016) compared to the previous year (2014) when students were only exposed to tutorials. The maximum and average marks obtained were also higher. There was significant difference between the maximum marks for Drug Delivery Systems 2 and the average marks for Drug Delivery Systems 1 with P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links