Displaying all 5 publications

Abstract:
Sort:
  1. Ahmad NN, Ahmad Kamarudin NH, Leow ATC, Rahman RNZRA
    Molecules, 2020 Aug 25;25(17).
    PMID: 32854267 DOI: 10.3390/molecules25173858
    Surface charge residues have been recognized as one of the stability determinants in protein. In this study, we sought to compare and analyse the stability and conformational dynamics of staphylococcal lipase mutants with surface lysine mutation using computational and experimental methods. Three highly mutable and exposed lysine residues (Lys91, Lys177, Lys325) were targeted to generate six mutant lipases in silico. The model structures were simulated in water environment at 25 °C. Our simulations showed that the stability was compromised when Lys177 was substituted while mutation at position 91 and 325 improved the stability. To illustrate the putative alterations of enzyme stability in the stabilising mutants, we characterized single mutant K325G and double mutant K91A/K325G. Both mutants showed a 5 °C change in optimal temperature compared to their wild type. Single mutant K325G rendered a longer half-life at 25 °C (T1/2 = 21 h) while double mutant K91A/K325G retained only 40% of relative activity after 12 h incubation. The optimal pH for mutant K325G was shifted from 8 to 9 and similar substrate preference was observed for the wild type and two mutants. Our findings indicate that surface lysine mutation alters the enzymatic behaviour and, thus, rationalizes the functional effects of surface exposed lysine in conformational stability and activity of this lipase.
  2. Veno J, Ahmad Kamarudin NH, Mohamad Ali MS, Masomian M, Raja Abd Rahman RNZ
    Int J Mol Sci, 2017 Nov 04;18(11).
    PMID: 29113034 DOI: 10.3390/ijms18112202
    In the industrial processes, lipases are expected to operate at temperatures above 45 °C and could retain activity in organic solvents. Hence, a C-terminal truncated lipase from Staphylococcus epidermis AT2 (rT-M386) was engineered by directed evolution. A mutant with glycine-to-cysteine substitution (G210C) demonstrated a remarkable improvement of thermostability, whereby the mutation enhanced the activity five-fold when compared to the rT-M386 at 50 °C. The rT-M386 and G210C lipases were purified concurrently using GST-affinity chromatography. The biochemical and biophysical properties of both enzymes were investigated. The G210C lipase showed a higher optimum temperature (45 °C) and displayed a more prolonged half-life in the range of 40-60 °C as compared to rT-M386. Both lipases exhibited optimal activity and stability at pH 8. The G210C showed the highest stability in the presence of polar organic solvents at 50 °C compared to the rT-M386. Denatured protein analysis presented a significant change in the molecular ellipticity value above 60 °C, which verified the experimental result on the temperature and thermostability profile of G210C.
  3. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Rahman RNZRA, Ali MSM
    Comput Struct Biotechnol J, 2019;17:215-228.
    PMID: 30828413 DOI: 10.1016/j.csbj.2019.01.005
    Pseudomonas fluorescens AMS8 lipase lid 1 structure is rigid and holds unclear roles due to the absence of solvent-interactions. Lid 1 region was stabilized by 17 hydrogen bond linkages and displayed lower mean hydrophobicity (0.596) compared to MIS38 lipase. Mutating lid 1 residues, Thr-52 and Gly-55 to aromatic hydrophobic-polar tyrosine would churned more side-chain interactions between lid 1 and water or toluene. This study revealed that T52Y leads G55Y and its recombinant towards achieving higher solvent-accessible surface area and longer half-life at 25 to 37 °C in 0.5% (v/v) toluene. T52Y also exhibited better substrate affinity with long-chain carbon substrate in aqueous media. The affinity for pNP palmitate, laurate and caprylate increased in 0.5% (v/v) toluene in recombinant AMS8, but the affinity in similar substrates was substantially declined in lid 1 mutated lipases. Regarding enzyme efficiency, the recombinant AMS8 lipase displayed highest value of kcat/Km in 0.5% (v/v) toluene, mainly with pNPC. In both hydrolysis reactions with 0% and 0.5% (v/v) toluene, the enzyme efficiency of G55Y was found higher than T52Y for pNPL and pNPP. At 0.5% (v/v) toluene, both mutants showed reductions in activation energy and enthalpy values as temperature increased from 25 to 35 °C, displaying better catalytic functions. Only T52Y exhibited increase in entropy values at 0.5% (v/v) toluene indicating structure stability. As a conclusion, Thr-52 and Gly-55 are important residues for lid 1 stability as their existence helps to retain the geometrical structure of alpha-helix and connecting hinge.
  4. Mohd Azrin NA, Mohamad Ali MS, Raja Abd Rahman RNZ, Mohd Shariff F, Ahmad Kamarudin NH, Muhd Noor ND
    J Biomol Struct Dyn, 2023 Aug 22.
    PMID: 37608543 DOI: 10.1080/07391102.2023.2249105
    Rand protease is a serine protease that shared common characteristics with members of the MEROPS S8 subtilisin family. It is thermostable, highly stable in organic solvent and broad in specificity. Many structures of homologous protein solved by X-ray crystallography and NMR have been deposited to Protein Data Bank (PDB) which allowed this study to rely on structure prediction by deep learning to build three-dimensional (3D) structure of full length and mature Rand protease (flRP and mRP). In silico cysteine mutation to 7 predicted high affinity Ca2+ coordinating residues were introduced, and the mutants were subjected to molecular dynamics simulation to study its effect on flRP and mRP. MD simulation showed a marked increase in flexibility of the pro-peptide segment indicating the impact of single cysteine substitution at high affinity Ca2+ coordinating residues to autolysis of flRP. MD simulation for mRP reaffirmed the role of Ca2+ coordinating sites in providing stability to Rand protease. In addition, these residues also affect the autolysis, folding and hydrophobicity of RP. Essential dynamics observed large contribution of the first few eigenvectors of flRP, mRP and their high affinity Ca2+ coordinating residues mutants to the TMSF values which indicates that these values account for a large portion of the overall atomic fluctuations. These results have given a more comprehensive understanding on the role of cysteine substituted Ca2+ coordinating surface loop to the structure of flRP and mRP which are important in contributing to the structural stability of subtilisin.Communicated by Ramaswamy H. Sarma.
  5. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Raja Abd Rahman RNZ, Mohamad Ali MS
    Molecules, 2017 Aug 12;22(8).
    PMID: 28805665 DOI: 10.3390/molecules22081312
    The alkaline cold-active lipase from Pseudomonas fluorescens AMS8 undergoes major structural changes when reacted with hydrophobic organic solvents. In toluene, the AMS8 lipase catalytic region is exposed by the moving hydrophobic lid 2 (Glu-148 to Gly-167). Solvent-accessible surface area analysis revealed that Leu-208, which is located next to the nucleophilic Ser-207 has a focal function in influencing substrate accessibility and flexibility of the catalytic pocket. Based on molecular dynamic simulations, it was found that Leu-208 strongly facilitates the lid 2 opening via its side-chain. The KM and Kcat/KM of L208A mutant were substrate dependent as it preferred a smaller-chain ester (pNP-caprylate) as compared to medium (pNP-laurate) or long-chain (pNP-palmitate) esters. In esterification of ethyl hexanoate, L208A promotes a higher ester conversion rate at 20 °C but not at 30 °C, as a 27% decline was observed. Interestingly, the wild-type (WT) lipase's conversion rate was found to increase with a higher temperature. WT lipase AMS8 esterification was higher in toluene as compared to L208A. Hence, the results showed that Leu-208 of AMS8 lipase plays an important role in steering a broad range of substrates into its active site region by regulating the flexibility of this region. Leu-208 is therefore predicted to be crucial for its role in interfacial activation and catalysis in toluene.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links