Displaying all 5 publications

Abstract:
Sort:
  1. Alara OR, Abdurahman NH
    J Food Sci Technol, 2019 Feb;56(2):580-588.
    PMID: 30906015 DOI: 10.1007/s13197-018-3512-4
    Recently, unconventional methods especially microwave-assisted hydrodistillation extraction (MAHE) is being used as an alternative technique for extracting bioactive compounds from plant materials due to its advantages over conventional methods such as Soxhlet extraction (SE). In this study, bioactive compounds were extracted from Vernonia cinerea leaf using both MAHE and SE methods. In addition, the kinetic study of MAHE and SE methods were carried out using first- and second-order kinetic models. The results obtained showed that MAHE can extract higher yield of bioactive compounds from V. cinerea leaf in a shorter time and reduced used of extracting solvent compared with SE method. Based on the results obtained, second-order kinetic models can actually describe the extraction of bioactive compounds from V. cinerea leaf through MAHE with extraction rate coefficient of 0.1172 L/gmin and extraction capacity of 1.0547 L/g as compared to SE with 0.0157 L/gmin and 1.1626 L/g of extraction rate coefficient and extraction capacity, respectively. The gas chromatography-mass spectrometry analysis of the oil showed the presence of numerous heavy fractions in the oil obtained through MAHE as compared with the SE method. Moreover, the electric consumption and environmental impacts analysis of the oil suggested that MAHE can be a suitable green technique for extracting bioactive compounds from V. cinerea leaf.
  2. Alara OR, Abdurahman NH, Ukaegbu CI
    Curr Res Food Sci, 2021;4:200-214.
    PMID: 33899007 DOI: 10.1016/j.crfs.2021.03.011
    Phenolic compounds are parts of secondary metabolites mostly found in plant species with enormous structural diversities. They can exist as glycosides or aglycones; matrix or free-bound compounds; and comprising mostly polymerized or monomer structures. Additionally, these compounds are not universally dispensed within plants with varied stability. This has contributed to challenging extraction processes; implying that employing a single step or inappropriate extraction technique might change the recovery of phenolic components from the plant samples. Hence, it is important to select an appropriate extraction method so as to recover the targeted phenolic compounds. This is will helps to recover substantial yields from the sample matrix. Therefore, this review mainly focuses on the phenolic compounds and several methods of extraction that are used to obtaining them from plant materials. These extraction methods includes both conventional and unconventional techniques.
  3. Alara OR, Abdurahman NH, Ali HA
    Chem Zvesti, 2023 Apr 10.
    PMID: 37362792 DOI: 10.1007/s11696-023-02771-x
    Vegetables are industrial crops endowed with both nutritional and medicinal values. The overwhelming contributions of vegetables to human living in the form of nutrients and medicine cannot be under emphasised. Thus, this study examined the recoveries of phenolic compounds and antioxidants from Corchorus olitorius leaves using a microwave-enhanced extraction technique. Furthermore, the phenolic compounds in the leaf extract of C. olitorius were comprehensively identified using liquid chromatography-mass spectrometry quadrupole of flight (LC-QToF-MS). At the optimized conditions of microwave-enhanced extraction (extraction time of 131 s, microwave power 305 W, solvent/sample ratio of 12 mL/g, and ethanol concentration of 50%), total phenolic content (TPC) of 343.098 ± 3.05 mg GAE/10 g d.b., IC50 values of 68.89 ± 1.08 and 29.76 ± 1.00 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6'-sulfonic acid) (ABTS) assays, respectively, were achieved. Furthermore, an aggregate of fourteen phenolic compounds that include 1-galloyl-glucose, 1,3,5-O-tricaffeoylquinic acid, procyanidin C-1, 4,4',5,6-tetrahydroxystilbene, 3,4,5-O-tricaffeoylquinic acid, 5-desgalloylstachyurin, sanguiin H-4, corilagin_1, 1-O-galloylpedunculagin, laevigatin A, pedunculagin, 2,4,6-tri-O-galloyl-β-D-glucose, 1,3,6-trigalloyl-β-D-glucose, and 1,2,3,6-tetra-O-galloyl-β-D-glucose was tentatively identified in the leaf extract of C. olitorius. In general, this study has established C. olitorius leaves as sources of phenolic compounds and natural antioxidants. Thus, the intake can continue to be promoted as a way forward in solving the problem of food insecurity.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11696-023-02771-x.

  4. Olalere OA, Abdurahman NH, Yunus RBM, Alara OR
    Data Brief, 2018 Aug;19:1627-1630.
    PMID: 30229034 DOI: 10.1016/j.dib.2018.06.034
    This paper contains data from the elemental and phytochemical profiling of black pepper oleoresin extracts using the LC-MS QToF and ICP-MS analysis. In recent years studies have shown the medicinal properties of extracts from these two cultivars of Piper nigrum. The medicinal properties are attributed to the presence of many secondary metabolites and mineral element in them. The phytochemical profiling was conducted using a Liquid Chromatography equipped with an electrospray time-of-flight mass spectrometer detectors. The mass spectrometer was equipped with an electrospray ionization sources operated in positive ion mode. The alkaloid compounds in the optimized black pepper extract were tentatively characterized in accordance with their ions׳ mass fragmentation.
  5. Alara OR, Abdurahman NH, Ukaegbu CI, Hassan Z, Kabbashi NA
    Data Brief, 2018 Dec;21:1686-1689.
    PMID: 30505901 DOI: 10.1016/j.dib.2018.10.159
    The tentative identification of bioactive compounds in the extract of Vernonia amygdalina leaf was carried out using positive ionization of Liquid chromatography-mass spectrometry quadrupole time of flight (LC-Q-TOF/MS). The positive ionization is associated with the presence of saponins, flavonoids, alkaloids, terpenoids, and glycosides. Tentative assignments of the secondary metabolites were performed by comparing the MS fragmentation patterns with Waters® UNIFY library which allows positive identification of the compounds based on the spectral match. All the metabolites compounds were estimated and presented in a BPI (Base peak intensity) plot. These data are the unpublished supplementary materials related to "Ethanolic extraction of bioactive compounds from V. amygdalina leaf using response surface methodology as an optimization tool" (Alara et al., 2018).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links