Displaying all 4 publications

Abstract:
Sort:
  1. Abdul Sani SF, Othman MHU, Alqahtani A, Almugren KS, Alkallas FH, Bradley DA
    PLoS One, 2020;15(12):e0241550.
    PMID: 33378398 DOI: 10.1371/journal.pone.0241550
    For x- and gamma- irradiations delivering entrance doses from 2- up to 1000 Gy to commercial 1.0 mm thick borosilicate glass microscope slides, study has been made of their thermoluminescence yield. With an effective atomic number of 10.6 (approximating bone equivalence), photon energy dependency is apparent in the low x-ray energy range, with interplay between the photoelectric effect and attenuation. As an example, over the examined dose range, at 120 kVp the photon sensitivity has been found to be some 5× that of 60Co gamma irradiations, also with repeatability to within ~1%. The glow-curves, taking the form of a single prominent broad peak, have been deconvolved yielding at best fit a total of five peaks, the associated activation energies and frequency factors also being obtained. The results indicate borosilicate glass slides to offer promising performance as a low-cost passive radiation dosimeter, with utility for both radiotherapy and industrial applications.
  2. Nazeri AAZA, Sani SFA, Ung NM, Almugren KS, Alkallas FH, Bradley DA
    Appl Radiat Isot, 2021 Oct;176:109814.
    PMID: 34175543 DOI: 10.1016/j.apradiso.2021.109814
    Brachytherapy is commonly used in treatment of cervical, prostate, breast and skin cancers, also for oral cancers, typically via the application of sealed radioactive sources that are inserted within or alongside the area to be treated. A particular aim of the various brachytherapy techniques is to accurately transfer to the targeted tumour the largest possible dose, at the same time minimizing dose to the surrounding normal tissue, including organs at risk. The dose fall-off with distance from the sources is steep, the dose gradient representing a prime factor in determining the dose distribution, also representing a challenge to the conduct of measurements around sources. Amorphous borosilicate glass (B2O3) in the form of microscope cover slips is recognized to offer a practicable system for such thermoluminescence dosimetry (TLD), providing for high-spatial resolution (down to 
  3. Mat Nawi SN, Abdul Sani SF, Khandaker MU, Ung NM, Almugren KS, Alkallas FH, et al.
    PLoS One, 2020;15(7):e0235053.
    PMID: 32673337 DOI: 10.1371/journal.pone.0235053
    Study has been made of the thermoluminescence yield of various novel tailor-made silica fibres, 6 and 8 mol % Ge-doped, with four differing outer dimensions, comprised of flat and cylindrical shapes, subjected to electron irradiation. Main thermoluminescence dosimetric characteristics have been investigated, including the glow curve, dose response, energy dependence, minimum detectable dose, effective atomic number, linearity of index and sensitivity of the fibres. The studies have also established the uncertainties involved as well as the stability of response in terms of fading effect, reproducibility and annealing. In addition, dose-rate dependence was accounted for as this has the potential to be a significant factor in radiotherapy applications. The 6 and 8 mol % fibres have been found to provide highly linear dose response within the range 1 to 4 Gy, the smallest size flat fibre, 6 mol% Ge-doped, showing the greatest response by a factor of 1.1 with respect to the highly popular LiF phosphor-based medium TLD100. All of the fibres also showed excellent reproducibility with a standard deviation of < 2% and < 4% for 6 and 8 mol % Ge-doped fibres respectively. For fading evaluation, the smallest 6 mol% Ge-doped dimension flat fibre, i.e., 85 × 270 μm displayed the lowest signal loss within 120 days post-irradiation, at around 26.9% also showing a response superior to that of all of the other fibres. Moreover, all the fibres and TLD-100 chips showed independence with respect to electron irradiation energy and dose-rate. Compared with the 8 mol% Ge-doped optical fibres, the 6 mol% Ge-doped flat optical fibres have been demonstrated to possess more desirable performance features for passive dosimetry, serving as a suitable alternative to TLD-100 for medical irradiation treatment applications.
  4. Wahib NB, Abdul Sani SF, Ramli A, Ismail SS, Abdul Jabar MH, Khandaker MU, et al.
    Radiat Environ Biophys, 2020 08;59(3):523-537.
    PMID: 32462382 DOI: 10.1007/s00411-020-00846-x
    Accidents resulting in widespread dispersal of radioactive materials have given rise to a need for materials that are convenient in allowing individual dose assessment. The present study examines natural Dead Sea salt adopted as a model thermoluminescence dosimetry system. Samples were prepared in two different forms, loose-raw and loose-ground, subsequently exposed to 60Co gamma-rays, delivering doses in the range 2-10 Gy. Key thermoluminescence (TL) properties were examined, including glow curves, dose response, sensitivity, reproducibility and fading. Glow curves shapes were found to be independent of given dose, prominent TL peaks for the raw and ground samples appearing in the temperature ranges 361-385 ºC and 366-401 ºC, respectively. The deconvolution of glow curves has been undertaken using GlowFit, resulting in ten overlapping first-order kinetic glow peaks. For both sample forms, the integrated TL yield displays linearity of response with dose, the loose-raw salt showing some 2.5 × the sensitivity of the ground salt. The samples showed similar degrees of fading, with respective residual signals 28 days post-irradiation of 66% and 62% for the ground and raw forms respectively; conversely, confronted by light-induced fading the respective signal losses were 62% and 80%. The effective atomic number of the Dead Sea salt of 16.3 is comparable to that of TLD-200 (Zeff 16.3), suitable as an environmental radiation monitor in accident situations but requiring careful calibration in the reconstruction of soft tissue dose (soft tissue Zeff 7.2). Sample luminescence studies were carried out via Raman and Photoluminescence spectroscopy as well as X-ray diffraction, ionizing radiation dependent variation in lattice structure being found to influence TL response.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links