Displaying all 6 publications

Abstract:
Sort:
  1. Ahamed NU, Ahmed N, Alqahtani M, Altwijri O, Ahmad RB, Sundaraj K
    J Phys Ther Sci, 2015 Jan;27(1):39-40.
    PMID: 25642033 DOI: 10.1589/jpts.27.39
    [Purpose] This study investigated the changes in the slope of EMG-time curves (relationship) at the maximal and different levels of dynamic (eccentric and concentric) and static (isometric) contractions. [Subjects and Methods] The subject was a 17 year-old male adolescent. The surface EMG signal of the dominant arm's biceps brachii (BB) was recorded through electrodes placed on the muscle belly. [Results] The results obtained during the contractions show that the regression slope was very close to 1.00 during concentric contraction, whereas those of eccentric and isometric contractions were lower. Significant differences were found for the EMG amplitude and time lags among the contractions. [Conclusion] The results show that the EMG signal of the BB varies among the three modes of contraction and the relationship of the EMG amplitude with a time lag gives the best fit during concentric contraction.
  2. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Alqahtani M, Almijalli M, et al.
    Sensors (Basel), 2021 Apr 17;21(8).
    PMID: 33920617 DOI: 10.3390/s21082836
    Human body measurement data related to walking can characterize functional movement and thereby become an important tool for health assessment. Single-camera-captured two-dimensional (2D) image sequences of marker-less walking individuals might be a simple approach for estimating human body measurement data which could be used in walking speed-related health assessment. Conventional body measurement data of 2D images are dependent on body-worn garments (used as segmental markers) and are susceptible to changes in the distance between the participant and camera in indoor and outdoor settings. In this study, we propose five ratio-based body measurement data that can be extracted from 2D images and can be used to classify three walking speeds (i.e., slow, normal, and fast) using a deep learning-based bidirectional long short-term memory classification model. The results showed that average classification accuracies of 88.08% and 79.18% could be achieved in indoor and outdoor environments, respectively. Additionally, the proposed ratio-based body measurement data are independent of body-worn garments and not susceptible to changes in the distance between the walking individual and camera. As a simple but efficient technique, the proposed walking speed classification has great potential to be employed in clinics and aged care homes.
  3. Rabbi MF, Ghazali KH, Mohd II, Alqahtani M, Altwijri O, Ahamed NU
    J Back Musculoskelet Rehabil, 2018;31(6):1097-1104.
    PMID: 29945343 DOI: 10.3233/BMR-170988
    This study aimed to investigate the electrical activity of two muscles located at the dorsal surface during Islamic prayer (Salat). Specifically, the electromyography (EMG) activity of the erector spinae and trapezius muscles during four positions observed while performing Salat, namely standing, bowing, sitting and prostration, were investigated. Seven adult subjects with an average age of 28.1 (± 3.8) years were included in the study. EMG data were obtained from their trapezius and erector spinae muscles while the subjects maintained the specific positions of Salat. The EMG signal was analysed using time and frequency domain features. The results indicate that the trapezius muscle remains relaxed during the standing and sitting positions while the erector spinae muscle remains contracted during these two positions. Additionally, during the bowing and prostration positions of Salat, these two muscles exhibit the opposite activities: the trapezius muscle remains contracted while the erector spinae muscle remains relaxed. Overall, both muscles maintain a balance in terms of contraction and relaxation during bowing and prostration position. The irregularity of the neuro-muscular signal might cause pain and prevent Muslims from performing their obligatory prayer. This study will aid the accurate understanding of how the back muscles respond in specific postures during Salat.
  4. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Phys Eng Sci Med, 2022 Dec;45(4):1289-1300.
    PMID: 36352317 DOI: 10.1007/s13246-022-01195-3
    Unusual walk patterns may increase individuals' risks of falling. Anthropometric features of the human body, such as the body mass index (BMI), influences the walk patterns of individuals. In addition to the BMI, uneven walking surfaces may cause variations in the usual walk patterns of an individual that will potentially increase the individual's risk of falling. The objective of this study was to statistically evaluate the variations in the walk patterns of individuals belonging to two BMI groups across a wide range of walking surfaces and to investigate whether a deep learning method could classify the BMI-specific walk patterns with similar variations. Data collected by wearable inertial measurement unit (IMU) sensors attached to individuals with two different BMI were collected while walking on real-world surfaces. In addition to traditional statistical analysis tools, an advanced deep learning-based neural network was used to evaluate and classify the BMI-specific walk patterns. The walk patterns of overweight/obese individuals showed a greater correlation with the corresponding walking surfaces than the normal-weight population. The results were supported by the deep learning method, which was able to classify the walk patterns of overweight/obese (94.8 ± 4.5%) individuals more accurately than those of normal-weight (59.4 ± 23.7%) individuals. The results suggest that application of the deep learning method is more suitable for recognizing the walk patterns of overweight/obese population than those of normal-weight individuals. The findings from the study will potentially inform healthcare applications, including artificial intelligence-based fall assessment systems for minimizing the risk of fall-related incidents among overweight and obese individuals.
  5. Sikandar T, Rabbi MF, Ghazali KH, Altwijri O, Almijalli M, Ahamed NU
    Sci Rep, 2023 Sep 27;13(1):16177.
    PMID: 37758958 DOI: 10.1038/s41598-023-43428-9
    Gait data collection from overweight individuals walking on irregular surfaces is a challenging task that can be addressed using inertial measurement unit (IMU) sensors. However, it is unclear how many IMUs are needed, particularly when body attachment locations are not standardized. In this study, we analysed data collected from six body locations, including the torso, upper and lower limbs, to determine which locations exhibit significant variation across different real-world irregular surfaces. We then used deep learning method to verify whether the IMU data recorded from the identified body locations could classify walk patterns across the surfaces. Our results revealed two combinations of body locations, including the thigh and shank (i.e., the left and right shank, and the right thigh and right shank), from which IMU data should be collected to accurately classify walking patterns over real-world irregular surfaces (with classification accuracies of 97.24 and 95.87%, respectively). Our findings suggest that the identified numbers and locations of IMUs could potentially reduce the amount of data recorded and processed to develop a fall prevention system for overweight individuals.
  6. Ahamed NU, Sundaraj K, Alqahtani M, Altwijri O, Ali MA, Islam MA
    Technol Health Care, 2014 Oct 15.
    PMID: 25318958
    BACKGROUND: The relationship between surface electromyography (EMG) and force have been the subject of ongoing investigations and remain a subject of controversy. Even under static conditions, the relationships at different sensor placement locations in the biceps brachii (BB) muscle are complex.

    OBJECTIVE: The aim of this study was to compare the activity and relationship between surface EMG and static force from the BB muscle in terms of three sensor placement locations.

    METHODS: Twenty-one right hand dominant male subjects (age 25.3 ± 1.2 years) participated in the study. Surface EMG signals were detected from the subject's right BB muscle. The muscle activation during force was determined as the root mean square (RMS) electromyographic signal normalized to the peak RMS EMG signal of isometric contraction for 10 s. The statistical analysis included linear regression to examine the relationship between EMG amplitude and force of contraction [40-100% of maximal voluntary contraction (MVC)], repeated measures ANOVA to assess differences among the sensor placement locations, and coefficient of variation (CoV) for muscle activity variation.

    RESULTS: The results demonstrated that when the sensor was placed on the muscle belly, the linear slope coefficient was significantly greater for EMG versus force testing (r^{2} = 0.61, P > 0.05) than when placed on the lower part (r^{2}=0.31, P< 0.05) and upper part of the muscle belly (r^{2}=0.29, P > 0.05). In addition, the EMG signal activity on the muscle belly had less variability than the upper and lower parts (8.55% vs. 15.12% and 12.86%, respectively).

    CONCLUSION: These findings indicate the importance of applying the surface EMG sensor at the appropriate locations that follow muscle fiber orientation of the BB muscle during static contraction. As a result, EMG signals of three different placements may help to understand the difference in the amplitude of the signals due to placement.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links