Soil-transmitted helminth (STH) infections of humans fall within the World Health Organization's (WHO) grouping termed the neglected tropical diseases (NTDs). It is estimated that they affect approximately 1.4 billion people worldwide. A significant proportion of these infections are in the population of Southeast Asia. This review analyses published data on STH prevalence and intensity in Southeast Asia over the time period of 1900 to the present to describe age related patterns in these epidemiological measures. This is with a focus on the four major parasite species affecting humans; namely Ascaris lumbricoides, Trichuris trichiura and the hookworms; Necator americanus and Ancylostoma duodenale. Data were also collected on the diagnostic methods used in the published surveys and how the studies were designed to facilitate comparative analyses of recorded patterns and changes therein over time. PubMed, Google Scholar, EMBASE, ISI Web of Science, Cochrane Database of Systematic Reviews and the Global Atlas of Helminth Infections search engines were used to identify studies on STH in Southeast Asia with the search based on the major key words, and variants on, "soil-transmitted helminth" "Ascaris" "Trichuris" "hookworm" and the country name. A total of 280 studies satisfied the inclusion criteria from 11 Southeast Asian countries; Brunei, Cambodia, Indonesia, Lao People's Democratic Republic (Lao PDR), Malaysia, Myanmar, Philippines, Singapore, Thailand, Timor-Leste and Vietnam. It was concluded that the epidemiological patterns of STH infection by age and species mix in Southeast Asia are similar to those reported in other parts of the world. In the published studies there were a large number of different diagnostic methods used with differing sensitivities and specificities, which makes comparison of the results both within and between countries difficult. There is a clear requirement to standardise the methods of both STH diagnosis in faecal material and how the intensity of infection is recorded and reported in future STH research and in monitoring and evaluation (M&E) of the impact of continuing and expanding mass drug administration (MDA) programmes.
The World Health Organization has recommended the application of mass drug administration (MDA) in treating high prevalence neglected tropical diseases such as soil-transmitted helminths (STHs), schistosomiasis, lymphatic filariasis, onchocerciasis and trachoma. MDA-which is safe, effective and inexpensive-has been widely applied to eliminate or interrupt the transmission of STHs in particular and has been offered to people in endemic regions without requiring individual diagnosis. We propose two mathematical models to investigate the impact of MDA on the mean number of worms in both treated and untreated human subpopulations. By varying the efficay of drugs, initial conditions of the models, coverage and frequency of MDA (both annual and biannual), we examine the dynamic behaviour of both models and the possibility of interruption of transmission. Both models predict that the interruption of transmission is possible if the drug efficacy is sufficiently high, but STH infection remains endemic if the drug efficacy is sufficiently low. In between these two critical values, the two models produce different predictions. By applying an additional round of biannual and annual MDA, we find that interruption of transmission is likely to happen in both cases with lower drug efficacy. In order to interrupt the transmission of STH or eliminate the infection efficiently and effectively, it is crucial to identify the appropriate efficacy of drug, coverage, frequency, timing and number of rounds of MDA.
Much effort has been devoted by the World Health Organization (WHO) to eliminate soil-transmitted helminth (STH) infections by 2030 using mass drug administration targeted at particular risk groups alongside the availability to access water, sanitation and hygiene services. The targets set by the WHO for the control of helminth infections are typically defined in terms of the prevalence of infection, whereas the standard formulation of STH transmission models typically describe dynamic changes in the mean-worm burden. We develop a prevalence-based deterministic model to investigate the transmission dynamics of soil-transmitted helminthiasis in humans, subject to continuous exposure to infection over time. We analytically determine local stability criteria for all equilibria and find bifurcation points. Our model predicts that STH infection will either be eliminated (if the initial prevalence value, y(0), is sufficiently small) or remain endemic (if y(0) is sufficiently large), with the two stable points of endemic infection and parasite eradication separated by a transmission breakpoint. Two special cases of the model are analysed: (1) the distribution of the STH parasites in the host population is highly aggregated following a negative binomial distribution, and (2) no density-dependent effects act on the parasite population. We find that disease extinction is always possible for Case (1), but it is not so for Case (2) if y(0) is sufficiently large. However, by introducing stochastic perturbation into the deterministic model, we discover that chance effects can lead to outcomes not predicted by the deterministic model alone, with outcomes highly dependent on the degree of worm clumping, k. Specifically, we show that if the reproduction number and clumping are sufficiently bounded, then stochasticity will cause the parasite to die out. It follows that control of soil-transmitted helminths will be more difficult if the worm distribution tends towards clumping.