Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these methods, the spatiotemporal saliency detection approach reported promising results in the context of moving target detection. However, it is not accurate for moving target detection when visual tracking is performed under appearance variations. In this study, a visual tracking method is proposed based on spatiotemporal saliency and discriminative online learning methods to deal with appearance variations difficulties. Temporal saliency is used to represent moving target regions, and it was extracted based on the frame difference with Sauvola local adaptive thresholding algorithms. The spatial saliency is used to represent the target appearance details in candidate moving regions. SLIC superpixel segmentation, color, and moment features can be used to compute feature uniqueness and spatial compactness of saliency measurements to detect spatial saliency. It is a time consuming process, which prompted the development of a parallel algorithm to optimize and distribute the saliency detection processes that are loaded into the multi-processors. Spatiotemporal saliency is then obtained by combining the temporal and spatial saliencies to represent moving targets. Finally, a discriminative online learning algorithm was applied to generate a sample model based on spatiotemporal saliency. This sample model is then incrementally updated to detect the target in appearance variation conditions. Experiments conducted on the VIVID dataset demonstrated that the proposed visual tracking method is effective and is computationally efficient compared to state-of-the-art methods.
The study unfolds with an acknowledgment of the extensive exploration of TRIZ components, spanning a solid philosophy, quantitative and inductive methods, and practical tools, over the years. While the adoption of Semantic TRIZ (S-TRIZ) in high-tech industries for system development, innovation, and production has increased, the application of AI technologies to specific TRIZ components remains unexplored. This systematic literature review is conducted to delve into the detailed integration of AI with TRIZ, particularly S-TRIZ. The results elucidate the current state of AI applications within TRIZ, identifying focal TRIZ components and areas requiring further study. Additionally, the study highlights the trending AI technologies in this context. This exploration serves as a foundational resource for researchers, developers, and inventors, providing valuable insights into the integration of AI technologies with TRIZ concepts. The study not only paves the way for the development and automation of S-TRIZ but also outlines limitations for future research, guiding the trajectory of advancements in this interdisciplinary field.
The widespread adoption of cyber-physical systems and other cutting-edge digital technology in manufacturing industry production facilities may motivate stakeholders to embrace the idea of Industry 4.0. Some industrial companies already have different sensors installed on their machines; however, without proper analysis, the data collected is not useful. This systematic review's main goal is to synthesize the existing evidence on the application of predictive maintenance (PdM) with visual aids and to identify the key knowledge gaps in areas including utilities, power generation, industry, and energy consumption. After a thorough search and evaluation for relevancy, 37 documents were identified. Moreover, we identified the visual analytics of PdM, including anomaly detection, planning/scheduling, exploratory data analysis (EDA), and explainable artificial intelligence (XAI). The findings revealed that anomaly detection was a major domain in PdM-related works. We conclude that most of the literature lacks depth in terms of an overall framework that combines data-driven and knowledge-driven techniques of PdM in the manufacturing industry. Some works that utilized both techniques indicated promising results, but there is insufficient research on involving maintenance personnel's feedback in the latter stage of PdM architecture. Thus, there are still pertinent issues that need to be investigated, and limitations that need to be overcome before PdM is deployed with minimal human involvement.