EXPERIMENTAL APPROACH: Fresh mangosteen pericarp was blanched in hot water or steam at 100 °C for 0, 30, 60, 90 and 120 s and the residual PPO activity, total phenolic content (TPC), total anthocyanins, antioxidant activity, browning index and colour properties were evaluated. Additionally, the phenolic compounds were identified using liquid chromatography-mass spectrometry (LC-MS).
RESULTS AND CONCLUSIONS: Zero-order reaction kinetics (R2>0.800) showed that residual PPO activity was significantly (p<0.05) reduced in both blanched and steamed mangosteen pericarp. As expected, PPO was inactivated more rapidly in hot water (t 1/2=59.0 s) than in steam blanching (t 1/2=121.1 s). However, the principal component analysis (PCA) showed that steam blanching for 90 s was the most efficient method, preserving the highest levels of antioxidant capacity, expressed as Trolox equivalents (TE; 9135 µmol/g), Fe(III)-reducing power, expressed as TE, (9729 µmol/g), total anthocyanins (3.03 mg/g), and TPC, expressed as gallic acid equivalents (1057 mg/g). Overall, steam blanching for 90 s was the most efficient method because it best preserved the phenolic compounds and is also a cost-effective method compared to hot water, which needs to be replaced after a few applications.
NOVELTY AND SCIENTIFIC CONTRIBUTION: This is the first study to report the effects of blanching on the anthocyanins mainly present in mangosteen pericarp, in particular cyanidin-3-O-sophoroside (C3S) and cyanidin-3-O-glucoside (C3G), using high-performance liquid chromatography (HPLC) and LC-MS. This study makes a significant scientific contribution to the food industry by providing suitable blanching methods to preserve the quality of bioactive compounds, especially anthocyanins in mangosteen pericarp, which can be used as a natural colourant.