Displaying all 9 publications

Abstract:
Sort:
  1. Nurul, A.I., Azura, A.
    MyJurnal
    Knowledge about the thermal and storage behavior of produced protein is important for the purpose of storage, transport and shelve life during industrial application. Recombinant bromelain thermal and storage stability were measured and compared to the commercial bromelain using Differential Scanning Calorimetry (DSC). Recombinant bromelain is more stable than commercial bromelain at higher temperature but the stability was reduced after 7 days of storage at 4oC. Higher energy is needed to break the bond between amino acid chains in recombinant bromelain as shown by the enthalpy obtained, suggesting that recombinant bromelain has good protein structure and conformation compared to commercial.
  2. Nur AM, Nur AA, Lau WH
    Zootaxa, 2015;3986(2):243-8.
    PMID: 26250185 DOI: 10.11646/zootaxa.3986.2.8
    Here we provide an illustrated key to lepidopteran larvae that occur as pests on rice (Oryza) in Malaysia. We are unaware of a published key for this region for this vital commercial crop, and hence provide one based on easily observable features that could be useful for identification, early detection, and pest management by specialists and non-specialists alike (see discussion in Mukerji & Singh 1951, Sri et al. 2010, Timm et al. 2007, Tillmon et al. 2000, Wagener et al. 2004).
  3. Ab Rahman MF, Rusli A, Misman MA, Rashid AA
    ACS Omega, 2020 Nov 24;5(46):30329-30335.
    PMID: 33251468 DOI: 10.1021/acsomega.0c04964
    With increased awareness on the importance of gloves arising from the COVID-19 pandemic, people are expected to continue using them even after the pandemic recedes. This scenario in a way increased the rubber solid waste disposal problem; therefore, the production of biodegradable gloves may be an option to overcome this problem. However, the need to study the shelf life of biodegradable gloves is crucial before commercialization. There are well-established models to address the failure properties of gloves as stated in the American Society for Testing and Material (ASTM) D7160. In this study, polysaccharide-based material-filled natural rubber latex (PFNRL) gloves, which are biodegradable gloves, were subjected to an accelerated aging process at different temperatures of 50-80 °C for 1-120 days. Prediction models based on Arrhenius and shift factors were used to estimate the shelf life of the PFNRL gloves. Based on the results obtained, the estimated time for the PFNRL gloves to retain 75% of their tensile strength at shelf temperature (30 °C) based on Arrhenius and shift factor models was 2.8 years. Verification on the activation energy based on the shift factor model indicated that the shelf life of PFNRL gloves is 2.9 years, which is only a 3.6% difference. The value obtained is aligned with the requirement in accordance with ASTM D7160, which states that only up to a maximum of 3 years' shelf life is allowed for the gloves under accelerated aging conditions.
  4. Syuhada DN, Azura AR
    Polymers (Basel), 2021 Oct 19;13(20).
    PMID: 34685359 DOI: 10.3390/polym13203600
    In recent years, biodegradable composites have become important in various fields because of the increasing awareness of the global environment. Waste natural polymers have received much attention as renewable, biodegradable, non-toxic and low-cost filler in polymer composites. In order to exploit the high potential for residual natural loading in latex composites, different types of surface modification techniques have been applied. This review discusses the preparation and characterization of the modified waste natural fillers for latex-based composites. The potency of the waste natural filler for the latex-based composites was explored with a focus on the mechanical, thermal, biodegradability and filler-latex interaction. This review also offers an update on the possible application of the waste natural filler towards the biodegradability of the latex-based composites for a more sustainable future.
  5. Hashim YZ, Phirdaous A, Azura A
    Pharmacognosy Res, 2014 Jul;6(3):191-4.
    PMID: 25002797 DOI: 10.4103/0974-8490.132593
    Agarwood is a priceless non-timber forest product from Aquilaria species belonging to the Thymelaeaceae family. As a result of a defence mechanism to fend off pathogens, Aquilaria species develop agarwood or resin which can be used for incense, perfumery, and traditional medicines. Evidences from ethnopharmacological practices showed that Aquilaria spp. have been traditionally used in the Ayurvedic practice and Chinese medicine to treat various diseases particularly the inflammatory-associated diseases. There have been no reports on traditional use of agarwood towards cancer treatment. However, this is most probably due to the fact that cancer nomenclature is used in modern medicine to describe the diseases associated with unregulated cell growth in which inflammation and body pain are involved.
  6. Misman MA, Azura AR, Hamid ZA
    Carbohydr Polym, 2015 Sep 5;128:1-10.
    PMID: 26005134 DOI: 10.1016/j.carbpol.2015.04.004
    Starch-graft-acrylonitrile (ANS) is compounded with carboxylated nitrile butadiene rubber (XNBR) latex. The control XNBR and the ANS/XNBR latex films were prepared through a coagulant dipping process. The films were subjected to ageing and soil burial procedures. For the biodegradation experiment, the surface of the film was assessed after the 2nd, 4th and 8th week of soil burial. The ANS, XNBR, and ANS/XNBR colloidal stability were determined with a Malvern Zetasizer. For the dipped latex films, the mechanical, morphological and thermal properties were analyzed. The addition of ANS into the XNBR latex increased the stability of the colloidal dispersions, decreased the latex film tensile strength, but increased the elongation at break due to the bipolar interaction of the ANS and XNBR particles. The ANS/XNBR latex films aged faster than the control films while the morphological analysis showed the existence of a starch crystal region and the formation of microbial colonies on the surfaces of the films. Based on the TGA-DTA curves, a higher ΔT was observed for the ANS/XNBR latex films signifying high thermal energy needed for the film to thermally degrade.
  7. Raja-Sabudin RZ, Hamid AA, Yusof N, Alauddin H, Aziz SA, Kulaveerasingam S, et al.
    Saudi Med J, 2012 Oct;33(10):1131-3.
    PMID: 23047221
  8. Nur Azura AB, Yusoff M, Tan GY, Jegadeesh R, Appleton DR, Vikineswary S
    J Ind Microbiol Biotechnol, 2016 Apr;43(4):485-93.
    PMID: 26721619 DOI: 10.1007/s10295-015-1724-4
    Actinomycete strain AUM 00500 was 99.5 % similar to Streptomyces sanglieri NBRC 100784(T) and was evaluated for antagonistic activity towards Ganoderma boninense, the causative fungus of basal stem rot of oil palm. The strain showed strong antifungal activity towards G. boninense in in vitro and SEM analysis showed various modes of inhibition of the fungus. Ethyl acetate extracts of single culture and inhibition zone of cross-plug culture by HPLC indicated that strain AUM 00500 produced two different antibiotics of the glutarimide group namely cycloheximide and actiphenol. In greenhouse trials, oil palm seed treated with spores of S. sanglieri strain AUM 00500 at 10(9) cfu/ml showed significant (P 
  9. Raju G, Mas Haris MRH, Azura AR, Ahmed Mohamed Eid AM
    ACS Omega, 2020 Nov 10;5(44):28760-28766.
    PMID: 33195929 DOI: 10.1021/acsomega.0c04081
    The slow-release mechanism of copper into soil followed by soil biodegradation was studied using the chitosan (CTS)/epoxidized natural rubber (ENR) biocomposite. The biocomposite was prepared by homogenizing CTS in ENR50 (ENR with about 50% epoxy content) latex in the presence of curing agents and acetic acid. It was found that the adsorption property of the biocomposite was very much influenced by chitosan loading, where 20phrCTS-t-ENR biocomposite can absorb 76.31% of Cu(II) ions. The desorption study indicates that the copper (II) ion can be released at a very slow and control phase as proven by the kinetic study using zero-order, first-order, Higuchi, and Korsmeyer Peppas equations. The slow-release studies comply with the Higuchi square-root equation, indicating that the release process is diffusion-controlled. Results of desorption and biodegradation process suggest that this biocomposite has the potential use of being a slow-release matrix in the field of agriculture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links