Displaying all 6 publications

Abstract:
Sort:
  1. Bahadoran M, Ali J, Yupapin PP
    Appl Opt, 2013 Apr 20;52(12):2866-73.
    PMID: 23669699 DOI: 10.1364/AO.52.002866
    In this paper, the bifurcation behavior of light in the PANDA ring resonator is investigated using the signal flow graph (SFG) method, where the optical transfer function for the through and drop ports of the PANDA Vernier system are derived. The optical nonlinear phenomena, such as bistability, Ikeda instability, and dynamics of light in the silicon-on-insulator (SOI) PANDA ring resonator with four couplers are studied. The transmission curves for bistability and instability as a function of the resonant mode numbers and coupling coefficients for the coupler are derived by the SFG method and simulated. The proposed system has an advantage as no optical pumping component is required. Simulated results show that closed-loop bistable switching can be generated and achieved by varying mode resonant numbers in the SOI-PANDA Vernier resonator, where a smooth and closed-loop bistable switching with low relative output/input power can be obtained and realized. The minimum through-port switching time of 1.1 ps for resonant mode numbers of 5;4;4 and minimum drop port switching time of 1.96 ps for resonant mode numbers of 9;7;7 of the PANDA Vernier resonator are achieved, which makes the PANDA Vernier resonator an operative component for optical applications, such as optical signal processing and a fast switching key in photonics integrated circuits.
  2. Bahadoran M, Noorden AF, Chaudhary K, Mohajer FS, Aziz MS, Hashim S, et al.
    Sensors (Basel), 2014;14(7):12885-99.
    PMID: 25046015 DOI: 10.3390/s140712885
    A new photonics biosensor configuration comprising a Double-side Ring Add-drop Filter microring resonator (DR-ADF) made from SiO2-TiO2 material is proposed for the detection of Salmonella bacteria (SB) in blood. The scattering matrix method using inductive calculation is used to determine the output signal's intensities in the blood with and without presence of Salmonella. The change in refractive index due to the reaction of Salmonella bacteria with its applied antibody on the flagellin layer loaded on the sensing and detecting microresonator causes the increase in through and dropper port's intensities of the output signal which leads to the detection of SB in blood. A shift in the output signal wavelength is observed with resolution of 0.01 nm. The change in intensity and shift in wavelength is analyzed with respect to the change in the refractive index which contributes toward achieving an ultra-high sensitivity of 95,500 nm/RIU which is almost two orders higher than that of reported from single ring sensors and the limit of detection is in the order of 1 × 10(-8) RIU. In applications, such a system can be employed for a high sensitive and fast detection of bacteria.
  3. Akbari E, Buntat Z, Enzevaee A, Yazdi MK, Bahadoran M, Nikoukar A
    Nanoscale Res Lett, 2014;9(1):402.
    PMID: 25177219 DOI: 10.1186/1556-276X-9-402
    Carbonaceous materials have recently received attention in electronic applications and measurement systems. In this work, we demonstrate the electrical behavior of carbon films fabricated by methane arc discharge decomposition technique. The current-voltage (I-V) characteristics of carbon films are investigated in the presence and absence of gas. The experiment reveals that the current passing through the carbon films increases when the concentration of CO2 gas is increased from 200 to 800 ppm. This phenomenon which is a result of conductance changes can be employed in sensing applications such as gas sensors.
  4. Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, et al.
    Sci Rep, 2017 09 06;7(1):10675.
    PMID: 28878253 DOI: 10.1038/s41598-017-07626-6
    A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.
  5. Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, et al.
    Sci Rep, 2017 May 31;7(1):2746.
    PMID: 28566682 DOI: 10.1038/s41598-017-01849-3
    A model of solitonic conduction in neuronal branchlets with microstructure is presented. The application of cable theory to neurons with microstructure results in a nonlinear cable equation that is solved using a direct method to obtain analytical approximations of traveling wave solutions. It is shown that a linear superposition of two oppositely directed traveling waves demonstrate solitonic interaction: colliding waves can penetrate through each other, and continue fully intact as the exact pulses that entered the collision. These findings indicate that microstructure when polarized can sustain solitary waves that propagate at a constant velocity without attenuation or distortion in the absence of synaptic transmission. Solitonic conduction in a neuronal branchlet arising from polarizability of its microstructure is a novel signaling mode of electrotonic signals in thin processes (<0.5 μm diameter).
  6. Bahadoran M, Noorden AF, Mohajer FS, Abd Mubin MH, Chaudhary K, Jalil MA, et al.
    Artif Cells Nanomed Biotechnol, 2016;44(1):315-21.
    PMID: 25133457 DOI: 10.3109/21691401.2014.948549
    A new microring resonator system is proposed for the detection of the Salmonella bacterium in drinking water, which is made up of SiO2-TiO2 waveguide embedded inside thin film layer of the flagellin. The change in refractive index due to the binding of the Salmonella bacterium with flagellin layer causes a shift in the output signal wavelength and the variation in through and drop port's intensities, which leads to the detection of Salmonella bacterium in drinking water. The sensitivity of proposed sensor for detecting of Salmonella bacterium in water solution is 149 nm/RIU and the limit of detection is 7 × 10(-4)RIU.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links