Displaying all 8 publications

Abstract:
Sort:
  1. Verma R, Bairy I, Tiwari M, Bhat GV, Shenoy GG
    Mol Divers, 2019 Aug;23(3):541-554.
    PMID: 30430400 DOI: 10.1007/s11030-018-9889-1
    A series of novel 2-amino-4-(3-hydroxy-4-phenoxyphenyl)-6-(4-substituted phenyl) nicotinonitriles were synthesized and evaluated against HepG2, A-549 and Vero cell lines. Compounds 3b (IC50 16.74 ± 0.45 µM) and 3p (IC50 10.57 ± 0.54 µM) were found to be the most active compounds against A-549 cell line among the evaluated compounds. Further 3b- and 3p-induced apoptosis was characterized by AO/EB (acridine orange/ethidium bromide) nuclear staining method and also by DNA fragmentation study. A decrease in cell viability and initiation of apoptosis was clearly evident through the morphological changes in the A-549 cells treated with 3b and 3p when stained with this method. Fragmentation of DNA into nucleosomes was observed which further confirmed the cell apoptosis in cells treated with compound 3b. Flow cytometry studies confirmed the cell cycle arrest at G2/M phase in A549 cells treated with compound 3b. Further in silico studies performed supported the in vitro anticancer activity of these compounds as depicted by dock score and binding energy values.
  2. Kar SS, Bhat VG, Shenoy VP, Bairy I, Shenoy GG
    Chem Biol Drug Des, 2019 01;93(1):60-66.
    PMID: 30118192 DOI: 10.1111/cbdd.13379
    In our efforts to develop druggable diphenyl ethers as potential antitubercular agents, a series of novel diphenyl ether derivatives (5a-f, 6a-f) were designed and synthesized. The representative compounds showed promising in vitro activity against drug-susceptible, isoniazid-resistant, and multidrug-resistant strains of Mycobacterium tuberculosis with MIC values of 1.56 μg/ml (6b), 6.25 μg/ml (6a-d), and 3.125 μg/ml (6b-c), respectively. All the synthesized compounds exhibited satisfactory safety profile (CC50  > 300 μg/ml) against Vero and HepG2 cells. Reverse phase HPLC method was used to probe the physicochemical properties of the synthesized compounds. This series of compounds demonstrated comparatively low logP values. pKa values of representative compounds indicated that they were weak acids. Additionally, in vitro human liver microsomal stability assay confirmed that the synthesized compounds possessed acceptable stability under study conditions. The present study thus establishes compound 6b as the most promising antitubercular agent with acceptable drug-likeness.
  3. Hosuru Subramanya S, Bairy I, Nayak N, Padukone S, Sathian B, Gokhale S
    PLoS One, 2019;14(2):e0212042.
    PMID: 30779752 DOI: 10.1371/journal.pone.0212042
    A worldwide increase in the gastrointestinal colonization by extended-spectrum β-lactamase (ESBL)-producing bacteria has been observed. Their prevalence amongst Healthy People Living with HIV (HPLWH) has not been investigated adequately. The aim of this study was to determine and compare the rates of and risk factors for intestinal carriage and acquisition of extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) among healthy people living with HIV (HPLWH) and healthy HIV negative population in the community. A cross-sectional study was conducted. Rectal swabs from HPLWH (n = 119) and HIV negative individuals (n = 357) from the community were screened for ESBL and CPE. Phenotypically confirmed ESBL-E strains were genotyped by multiplex PCR. The risk factors associated with ESBL-E colonization were analyzed by a multivariable conditional logistic regression analysis. Specimen from 357 healthy volunteers (213 female and 144 male) and 119 HPLWH (82 female and 37 male) with a median age of 30 [IQR 11-50] years were included in the study. ESBL colonization were found in 45 (37.82% [CI 29.09, 47.16]) and 246 (68.91% [CI 63.93, 73.49]), HPLWH and healthy HIV negative participants respectively. HPLWH had lower ESBL carriage rate (odds ratio 0.274 [CI 0.178, 0.423]) compared to healthy HIV negative subject's (p<0.01). In this study, no carbapenemase-producing bacteria were isolated.CTX-M-15 type was the most predominant genotype in both groups. Livestock contact and over-the-counter medications were significantly associated with a higher ESBL-E carriage rate among healthy subjects. This is the first study in Nepal that has demonstrated a high rate of gut colonization by ESBL-E in the community, predominantly of blaCTX-M-15 genotype. This study divulges the low fecal carriage rate of ESBL producing bacteria in HPLWH group compared to healthy individuals in western Nepal. The factors responsible for this inverse relationship of HIV status and gut colonization by ESBL-E are unidentified and require further large-scale study.
  4. Kar SS, Bhat G V, Rao PP, Shenoy VP, Bairy I, Shenoy GG
    Drug Des Devel Ther, 2016;10:2299-310.
    PMID: 27486307 DOI: 10.2147/DDDT.S104037
    A series of triclosan mimic diphenyl ether derivatives have been synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. The binding mode of the compounds at the active site of enoyl-acyl carrier protein reductase of M. tuberculosis has been explored. Among them, compound 10b was found to possess antitubercular activity (minimum inhibitory concentration =12.5 µg/mL) comparable to triclosan. All the synthesized compounds exhibited low levels of cytotoxicity against Vero and HepG2 cell lines, and three compounds 10a, 10b, and 10c had a selectivity index more than 10. Compound 10b was also evaluated for log P, pKa, human liver microsomal stability, and % protein binding, in order to probe its druglikeness. Based on the antitubercular activity and druglikeness profile, it may be concluded that compound 10b could be a lead for future development of antitubercular drugs.
  5. Hosuru Subramanya S, Bairy I, Nayak N, Amberpet R, Padukone S, Metok Y, et al.
    PLoS One, 2020;15(5):e0227725.
    PMID: 32469888 DOI: 10.1371/journal.pone.0227725
    The surge in the prevalence of drug-resistant bacteria in poultry is a global concern as it may pose an extended threat to humans and animal health. The present study aimed to investigate the colonization proportion of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae (EPE and CPE, respectively) in the gut of healthy poultry, Gallus gallus domesticus in Kaski district of Western Nepal. Total, 113 pooled rectal swab specimens from 66 private household farms and 47 commercial poultry farms were collected by systematic random sampling from the Kaski district in western Nepal. Out of 113 pooled samples, 19 (28.8%) samples from 66 backyard farms, and 15 (31.9%) from 47 commercial broiler farms were positive for EPE. Of the 38 EPE strains isolated from 34 ESBL positive rectal swabs, 31(81.6%) were identified as Escherichia coli, five as Klebsiella pneumoniae (13.2%), and one each isolate of Enterobacter species and Citrobacter species (2.6%). Based on genotyping, 35/38 examined EPE strains (92.1%) were phylogroup-1 positive, and all these 35 strains (100%) had the CTX-M-15 gene and strains from phylogroup-2, and 9 were of CTX-M-2 and CTX-M-14, respectively. Among 38 ESBL positive isolates, 9 (23.7%) were Ambler class C (Amp C) co-producers, predominant were of DHA, followed by CIT genes. Two (6.5%) E. coli strains of ST131 belonged to clade C, rest 29/31 (93.5%) were non-ST131 E. coli. None of the isolates produced carbapenemase. Twenty isolates (52.6%) were in-vitro biofilm producers. Univariate analysis showed that the odd of ESBL carriage among commercial broilers were 1.160 times (95% CI 0.515, 2.613) higher than organically fed backyard flocks. This is the first study in Nepal, demonstrating the EPE colonization proportion, genotypes, and prevalence of high-risk clone E. coli ST131 among gut flora of healthy poultry. Our data indicated that CTX-M-15 was the most prevalent ESBL enzyme, mainly associated with E. coli belonging to non-ST131clones and the absence of carbapenemases.
  6. Hakkimane SS, Shenoy VP, Gaonkar SL, Bairy I, Guru BR
    Int J Nanomedicine, 2018;13:4303-4318.
    PMID: 30087562 DOI: 10.2147/IJN.S163925
    INTRODUCTION: Tuberculosis (TB) is the single largest infectious disease which requires a prolonged treatment regime with multiple drugs. The present treatment for TB includes frequent administration of a combination of four drugs for a duration of 6 months. This leads to patient's noncompliance, in addition to developing drug-resistant strains which makes treatment more difficult. The formulation of drugs with biodegradable polymeric nanoparticles (NPs) promises to overcome this problem.

    MATERIALS AND METHODS: In this study, we focus on two important drugs used for TB treatment - rifampicin (RIF) and isoniazid (INH) - and report a detailed study of RIF-loaded poly lactic-co-glycolic acid (PLGA) NPs and INH modified as INH benz-hydrazone (IH2) which gives the same therapeutic effect as INH but is more stable and enhances the drug loading in PLGA NPs by 15-fold compared to INH. The optimized formulation was characterized using particle size analyzer, scanning electron microscopy and transmission electron microscopy. The drug release from NPs and stability of drug were tested in different pH conditions.

    RESULTS: It was found that RIF and IH2 loaded in NPs release in a slow and sustained manner over a period of 1 month and they are more stable in NPs formulation compared to the free form. RIF- and IH2-loaded NPs were tested for antimicrobial susceptibility against Mycobacterium tuberculosis H37Rv strain. RIF loaded in PLGA NPs consistently inhibited the growth at 70% of the minimum inhibitory concentration (MIC) of pure RIF (MIC level 1 µg/mL), and pure IH2 and IH2-loaded NPs showed inhibition at MIC equivalent to the MIC of INH (0.1 µg/mL).

    CONCLUSION: These results show that NP formulations will improve the efficacy of drug delivery for TB treatment.

  7. Subramanya SH, Bairy I, Metok Y, Baral BP, Gautam D, Nayak N
    Sci Rep, 2021 01 22;11(1):2091.
    PMID: 33483551 DOI: 10.1038/s41598-021-81315-3
    The increasing trend of gut colonization by extended-spectrum β-lactamase (ESBL) producing Enterobacterales has been observed in conventional farm animals and their owners. Still, such colonization among domesticated organically fed livestock has not been well studied. This study aimed to determine the gut colonization rate of ESBL-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae (CPE) among rural subsistence farming communities of the Kaski district in Nepal. Rectal swabs collected by systematic random sampling from 128 households of subsistence farming communities were screened for ESBL-producing Enterobacteriaceae and CPE by phenotypic and molecular methods. A total of 357 (57%) ESBL-producing Enterobacteriaceae isolates were obtained from 626 specimens, which included 97 ESBL-producing Enterobacteriaceae (75.8%) from 128 adult humans, 101 (79.5%) from 127 of their children, 51 (47.7%) from 107 cattle, 26 (51%) from 51 goats, 30 (34.9%) from 86 poultry and 52 (42%) from 127 environmental samples. No CPE was isolated from any of the samples. blaCTX-M-15 was the most predominant gene found in animal (86.8%) and human (80.5%) isolates. Out of 308 Escherichia coli isolates, 16 human and two poultry isolates were positive for ST131 and were of clade C. Among non-cephalosporin antibiotics, the resistance rates were observed slightly higher in tetracycline and ciprofloxacin among all study subjects. This is the first one-health study in Nepal, demonstrating the high rate of CTX-M-15 type ESBL-producing Enterobacteriaceae among gut flora of subsistence-based farming communities. Gut colonization by E. coli ST131 clade C among healthy farmers and poultry birds is a consequential public health concern.
  8. Verma R, Boshoff HIM, Arora K, Bairy I, Tiwari M, Varadaraj BG, et al.
    Drug Dev Res, 2020 May;81(3):315-328.
    PMID: 31782209 DOI: 10.1002/ddr.21623
    A new series of novel triclosan (2,4,4'-trichloro-2'-hydroxydiphenylether) analogues were designed, synthesized, and screened for their in vitro antimycobacterial and antibacterial activities. Most of the compounds showed significant activity against Mycobacterium tuberculosis H37Rv strain with minimum inhibitory concentration (MIC) values in 20-40 μM range in GAST/Fe medium when compared with triclosan (43 μM) in the first week of assay, and after additional incubation, seven compounds, that is, 2a, 2c, 2g, 2h, 2i, 2j, and 2m, exhibited MIC values at the concentration of 20-40 μM. The compounds also showed more significant activity against Bacillus subtilis and Staphylococcus aureus. The synthesized compounds showed druggable properties, and the predicted ADME (absorption, distribution, metabolism, and excretion) properties were within the acceptable limits. The in silico studies predicted better interactions of compounds with target protein residues and a higher dock score in comparison with triclosan. Molecular dynamics simulation study of the most active compound 2i was performed in order to further explore the stability of the protein-ligand complex and the protein-ligand interaction in detail.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links