Displaying all 9 publications

Abstract:
Sort:
  1. Basri AA, Zuber M, Basri EI, Zakaria MS, Aziz AFA, Tamagawa M, et al.
    Comput Math Methods Med, 2020;2020:9163085.
    PMID: 32454886 DOI: 10.1155/2020/9163085
    This study investigated the impact of paravalvular leakage (PVL) in relation to the different valve openings of the transcatheter aortic valve implantation (TAVI) valve using the fluid structure interaction (FSI) approach. Limited studies were found on the subject of FSI with regards to TAVI-PVL condition, which involves both fluid and structural responses in coupling interaction. Hence, further FSI simulation with the two-way coupling method is implemented to investigate the effects of hemodynamics blood flow along the patient-specific aorta model subjected to the interrelationship between PVL and the different valve openings using the established FSI software ANSYS 16.1. A 3D patient-specific aorta model is constructed using MIMICS software. The TAVI valve identical to Edward SAPIEN XT 26 (Edwards Lifesciences, Irvine, California), at different Geometrical Orifice Areas (GOAs), is implanted into the patient's aortic annulus. The leaflet opening of the TAVI valve is drawn according to severity of GOA opening represented in terms of 100%, 80%, 60%, and 40% opening, respectively. The result proved that the smallest percentage of GOA opening produced the highest possibility of PVL, increased the recirculatory flow proximally to the inner wall of the ascending aorta, and produced lower backflow velocity streamlines through the side area of PVL region. Overall, 40% GOA produced 89.17% increment of maximum velocity magnitude, 19.97% of pressure drop, 65.70% of maximum WSS magnitude, and a decrement of 33.62% total displacement magnitude with respect to the 100% GOA.
  2. Basri EI, Sultan MTH, Basri AA, Mustapha F, Ahmad KA
    Materials (Basel), 2021 Jul 02;14(13).
    PMID: 34279278 DOI: 10.3390/ma14133705
    A finite element (FE) model is developed to study the structural performance on a composite wing of a UAV with a tubercle design at the leading edge of the wing. The experimental study of the designation of the composite at the wing skin is carried out to prove the simulation validity through material characteristics. In this paper, the numerical modeling for simulation is highlighted to correlate the process parameter setting of simulation replicating the actual experimental tests. The percentage difference was calculated to be 11.1% by tensile and 10.47% by flexural. The numerical work applied the study of FE analysis and developed a standardized numerical approach for structural optimization, known as FE-ACP simulation. The significant findings of deformation are obtained according to Schrenk's aerodynamic loading, while the prediction of failure mode of Tsai-Wu under interaction among stresses and strains was acquired at the seventh and eighth layer of both spars.
  3. Zakaria MS, Ismail F, Tamagawa M, Aziz AFA, Wiriadidjaja S, Basri AA, et al.
    Med Biol Eng Comput, 2017 Sep;55(9):1519-1548.
    PMID: 28744828 DOI: 10.1007/s11517-017-1688-9
    Even though the mechanical heart valve (MHV) has been used routinely in clinical practice for over 60 years, the occurrence of serious complications such as blood clotting remains to be elucidated. This paper reviews the progress that has been made over the years in terms of numerical simulation method and the contribution of abnormal flow toward blood clotting from MHVs in the aortic position. It is believed that this review would likely be of interest to some readers in various disciplines, such as engineers, scientists, mathematicians and surgeons, to understand the phenomenon of blood clotting in MHVs through computational fluid dynamics.
  4. Ahmad Nadzri SNZ, Hameed Sultan MT, Md Shah AU, Safri SNA, Basri AA
    Polymers (Basel), 2020 Jun 04;12(6).
    PMID: 32512701 DOI: 10.3390/polym12061285
    Environmental awareness and trends to develop sustainable resources have directed much research attention towards kenaf fibre as an alternative reinforcement in composite manufacturing. Numerous studies have been conducted on kenaf and its hybrid composites. Most studies were conducted on kenaf/glass hybrid composites compared to other kenaf/synthetic hybrid composites. Similar with other materials, mechanical properties were the fundamental knowledge identified by the researcher. Limited studies conducted on other properties have restricted the use of kenaf composites to non-structural applications. To extend the potential of kenaf composites to automotive exterior or other critical applications, studies on impact properties can be a valuable contribution in the material field. This review discusses the mechanical and low velocity impact properties of kenaf/glass hybrid composites reported previously. Percentage loading of fibre, the angle of orientation in woven fibres and the chemical treatment applied to the fibre before compounding are the three major parameters that affect the mechanical and impact properties of the composites. This review provides insights into the mechanical and impact properties of kenaf/glass hybrid composites for future research.
  5. Singh S, Muralidharan AK, Radhakrishnan J, Zuber M, Basri AA, Mazlan N, et al.
    Biomimetics (Basel), 2022 Nov 21;7(4).
    PMID: 36412736 DOI: 10.3390/biomimetics7040208
    Insect RoboFlyers are interesting and active focuses of study but producing high-quality flapping robots that replicate insect flight is challenging., due to the dual requirement of both a sophisticated transmission mechanism with light weight and minimal intervening connections. This innovative mechanism was created to address the need for a producible structure that is small in size, small in mass, and has reduced design linkages. The proposed Single Crank-Slotted Dual Lever (SC-SDL) mechanism transforms rotational motion into specific angular motion at different velocities for each of its two strokes, i.e., the forward stroke and the return stroke. The discovery of a lag between the left and right lever motions in our design mechanism-I leads us to the conclusion that the flapping is asymmetric. To eliminate the position lag, the design has been altered, and a new design mechanism-II has been developed. Comparative kinematic analysis of both design systems is performed using simulations. Two-dimensional analysis of the base ornithopter configuration using ANSYS FLUENT yielded deeper insights regarding the influence of varying flapping frequency on critical flow metrics regarding adequate lift and thrust. For a flapping frequency of 24 Hz, adequate lift generation was achieved with minimal flow disturbances and wake interactions. Averaged dual wing estimations were made as part of the CFD study, which showed similar agreements. To validate the estimations, experimental tests were performed over the design mechanism-II configuration.
  6. Arumugam S, Kandasamy J, Md Shah AU, Hameed Sultan MT, Safri SNA, Abdul Majid MS, et al.
    Polymers (Basel), 2020 Jul 06;12(7).
    PMID: 32640502 DOI: 10.3390/polym12071501
    This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young's modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.
  7. Loganathan TM, Hameed Sultan MT, Jawaid M, Ahsan Q, Naveen J, Shah AUM, et al.
    Polymers (Basel), 2021 Oct 08;13(19).
    PMID: 34641263 DOI: 10.3390/polym13193448
    Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT-phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.
  8. Hashim MKR, Majid MSA, Jamir MRM, Kasim FH, Sultan MTH, Shah AUM, et al.
    Polymers (Basel), 2021 Nov 15;13(22).
    PMID: 34833235 DOI: 10.3390/polym13223936
    This study examined the fatigue behaviour of pineapple leaf fibre/carbon hybrid laminate composites under various stacking sequences. The vacuum infusion technique was used to fabricate the symmetric quasi-isotropic oriented laminates, in which the stacking was varied. The laminate was tested under static and fatigue tensile load according to ASTM D3039-76 and ASTM D3479-96, respectively. Maximum tensile strength and modulus of 119.34 MPa and 6.86 GPa, respectively, were recorded for the laminate with external PALF ply and internal carbon ply oriented at [± 45°2, 0°/90°2]s (PCCP_45090). The fatigue tests showed that PCCP_45090 and CPPC_09045 (with internal PALF ply and external carbon ply oriented at [0°/90°2, ± 45°2]s) exhibited a higher useful life, especially at the high-stress level of the ultimate tensile strength. The normalised stress against the number of cycles showed that the stacking sequences of different ply orientations affected the fatigue behaviour more than the stacking sequences of the material. The laminate stacking sequence significantly affected the hysteresis energy and stiffness evolution. The scanning electron microscopy images showed that the fatigue failure modes included fibre pull-out, fibre breakage, matrix cracking, debonding, and delamination. The study concluded that PCCP_45090 exhibited an outstanding fatigue performance.
  9. Loganathan TM, Sultan MTH, Ahsan Q, Jawaid M, Naveen J, Shah AUM, et al.
    J Therm Anal Calorim, 2022;147(24):14079-14096.
    PMID: 36093037 DOI: 10.1007/s10973-022-11557-4
    Natural fibers have emerged as a potential alternate to synthetic fibers, because of their excellent performance, biodegradability, renewability and sustainability. This research has focused on investigating the thermal, visco-elastic and fire-retardant properties of different hybrid Cytostachys Renda (CR)/kenaf fiber (K) (50/0; 35/ 15, 25/25, 15/ 35, 0/50)-reinforced MWCNT (multi-walled carbon nanotubes)-modified phenolic composites. The mass% of MWCNT-modified phenolic resin was maintained 50 mass% including 0.5 mass% of MWCNT. In order to achieve homogeneous dispersion ball milling process was employed to incorporate the MWCNT into phenolic resin (powder). Thermal results from thermogravimetric analysis and differential scanning calorimetric analysis revealed that the hybrid composites (35/15; 35 mass% CR and 15 mass% K) showed higher thermal stability among the composite samples. Visco-elastic results revealed that kenaf fiber-based MWCNT-modified composites (0/50; 0 mass% CR and 50 mass% K) exhibited higher storage and loss modulus due to high modulus kenaf fiber. Fire-retardant analysis (UL-94) showed that all the composite samples met H-B self-extinguishing rating and exhibited slow burning rate according to limiting oxygen index (LOI) test. However, (15/35; 15 mass% CR and 35 mass% K) hybrid composites showed the highest time to ignition, highest fire performance index, lowest total heat release rate, average mass loss rate, average fire growth rate index and maximum average rate of heat emission. Moreover, the smoke density of all hybrid composites was found to be less than 200 which meets the federal aviation regulations (FAR) 25.853d standard. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was carried out to select an optimal composite sample considering the thermal, visco-elastic and fire-retardant behaviors. Through TOPSIS analysis, the hybrid (15/35; 15 mass% CR and 35 mass% K) composite sample has been selected as an optimal composite which can be used for high-temperature aircraft and automotive applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links