Displaying all 4 publications

Abstract:
Sort:
  1. Mousavi SM, Hashemi SA, Iman Moezzi SM, Ravan N, Gholami A, Lai CW, et al.
    Biochem Res Int, 2021;2021:5599204.
    PMID: 34401207 DOI: 10.1155/2021/5599204
    Nowadays, pollution of the environment is a huge problem for humans and other organisms' health. Conventional methods of pollutant removal like membrane filtration or ion exchange are not efficient enough to lower the number of pollutants to standard levels. Biological methods, because of their higher efficiency and biocompatibility, are preferred for the remediation of pollutants. These cost-effective and environment-friendly methods of reducing pollutants are called bioremediation. In bioremediation methods, enzymes play the most crucial role. Enzymes can remedy different types of organic and inorganic pollutants, including PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury. Different enzymes isolated from various species have been used for the bioremediation of pollutants. Discovering new enzymes and new subtypes with specific physicochemical characteristics would be a promising way to find more efficient and cost-effective tools for the remediation of pollutants.
  2. Mousavi SM, Hashemi SA, Bahrani S, Yousefi K, Behbudi G, Babapoor A, et al.
    Int J Mol Sci, 2021 Jun 25;22(13).
    PMID: 34202199 DOI: 10.3390/ijms22136850
    In this review, the unique properties of intrinsically conducting polymer (ICP) in biomedical engineering fields are summarized. Polythiophene and its valuable derivatives are known as potent materials that can broadly be applied in biosensors, DNA, and gene delivery applications. Moreover, this material plays a basic role in curing and promoting anti-HIV drugs. Some of the thiophene's derivatives were chosen for different experiments and investigations to study their behavior and effects while binding with different materials and establishing new compounds. Many methods were considered for electrode coating and the conversion of thiophene to different monomers to improve their functions and to use them for a new generation of novel medical usages. It is believed that polythiophenes and their derivatives can be used in the future as a substitute for many old-fashioned ways of creating chemical biosensors polymeric materials and also drugs with lower side effects yet having a more effective response. It can be noted that syncing biochemistry with biomedical engineering will lead to a new generation of science, especially one that involves high-efficiency polymers. Therefore, since polythiophene can be customized with many derivatives, some of the novel combinations are covered in this review.
  3. Mousavi SM, Behbudi G, Gholami A, Hashemi SA, Nejad ZM, Bahrani S, et al.
    Biomater Res, 2022 Feb 02;26(1):4.
    PMID: 35109931 DOI: 10.1186/s40824-022-00252-y
    Zinc nanostructures (ZnONSs) have attracted much attention due to their morphological, physicochemical, and electrical properties, which were entailed for various biomedical applications such as cancer and diabetes treatment, anti-inflammatory activity, drug delivery. ZnONS play an important role in inducing cellular apoptosis, triggering excess reactive oxygen species (ROS) production, and releasing zinc ions due to their inherent nature and specific shape. Therefore, several new synthetic organometallic method has been developed to prepare ZnO crystalline nanostructures with controlled size and shape. Zinc oxide nanostructures' crystal size and shape can be controlled by simply changing the physical synthesis condition such as microwave irradiation time, reaction temperature, and TEA concentration at reflux. Physicochemical properties which are determined by the shape and size of ZnO nanostructures, directly affect their biological applications. These nanostructures can decompose the cell membrane and accumulate in the cytoplasm, which leads to apoptosis or cell death. In this study, we reviewed the various synthesis methods which affect the nano shapes of zinc particles, and physicochemical properties of zinc nanostructures that determined the shape of zinc nanomaterials. Also, we mentioned some macromolecules that controlled their physicochemical properties in a green and biological approaches. In addition, we present the recent progress of ZnONSs in the biomedical fields, which will help centralize biomedical fields and assist their future research development.
  4. Mousavi SM, Hashemi SA, Behbudi G, Mazraedoost S, Omidifar N, Gholami A, et al.
    PMID: 34434245 DOI: 10.1155/2021/5548404
    The utilization of medicinal plants and their derivatives in treating illnesses is more appropriately recognized as herbal remedy than traditional medicine. For centuries, medicinal herbs have been used for the treatment of diseases in many countries. Malva sylvestris L. is a kind of mallow derived from Malvaceae species and is recognized as common mallow. This amazing plant has antimicrobial, hepatoprotective, anti-inflammatory, and antioxidant properties and is considered as one of the most promising herbal medicinal species. This plant's traditional use in treating many diseases and preparing pharmaceutical compounds can show us how to know in depth the plant origin of drugs used to produce antibiotics and other therapeutic agents.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links